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Chapter 1: Overview of Agilent Ptolemy

Part of Advanced Design System, Agilent Ptolemy software gives you the simulation
tools you need to evaluate and design modern communication systems products.
Today’s designs call for implementing DSP algorithms in an increasing number of
portions in the total communications system path, from baseband processing, to
adaptive equalizers and phase-locked loops in the RF chain. Agilent Ptolemy
software gives you the most complete tool set available to do your job—including
cosimulating with the Advanced Design System’s RF and analog simulators from the
same schematic.

Agilent Ptolemy Major Benefits
The Agilent Ptolemy simulator allows you to:

¢ Find the best design topology using state-of-the-art technology with over 500
behavioral DSP and communication systems models

* Cosimulate with RF and analog simulators
¢ Integrate your intellectual property from previous designs

¢ Reduce the time-to-market for your products

Agilent Ptolemy Major Features

* Timed Synchronous Dataflow simulation

Cosimulation capability with RF and analog simulators

Easy-to-use interface for adding and sharing your own custom models

Interface to test instruments

Data Display with post-processing capability
¢ Integration with ADS DSP Synthesis

Agilent Ptolemy and UC Berkeley Ptolemy

The Ptolemy signal processing simulator has its roots at the University of California
at Berkeley. UC Berkeley Ptolemy is a third-generation software environment that
began in January of 1990. It is an outgrowth of two previous generations of design

Agilent Ptolemy and UC Berkeley Ptolemy 1-1
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environments, Blosim and Gabriel, that were aimed at digital signal processing. Both
environments use dataflow semantics with block-diagram syntax for the description
of algorithms.

Agilent EEsof has built on the UC Berkeley Ptolemy code in developing Agilent
Ptolemy software. We have added a large number of behavioral, time-domain models,
which are critical to communication systems designers. These include antenna and
propagation models. For DSP designers, we have upgraded fixed point analysis to be
scalable up to 256 bits. Agilent Ptolemy software runs under Advanced Design
System’s intuitive user interface, which includes post-processing capability,
cosimulation with analog/RF simulators, links to test instruments, online help, and a
host of other features.

In Ptolemy, different specialized design environments are called domains. Agilent
Ptolemy has modified the proven Synchronous Dataflow domain to include timed
components. This domain is called the Timed Synchronous Dataflow domain.

Timed Synchronous Dataflow Simulator

The Timed Synchronous Dataflow domain captures years of Agilent EEsof expertise
in system-level analog/RF simulation, while adding the benefits of dataflow
technology. This domain enables fast RF simulation, integration with signal
processing simulation, and cosimulation with Agilent EEsof circuit simulators. For
more information on the Timed Synchronous Dataflow simulator and the
Synchronous Dataflow domain, refer to Chapter 9, Theory of Operation.

Terminology

Throughout most of the Agilent Ptolemy documentation, we use the Advanced Design
System terminology, which is standard EDA terminology. However, UC Berkeley
Ptolemy has its own terminology and for users familiar with this terminology, or
those who are writing their own models, the following table compares the terms. Only
in the chapters on building signal processing models, and in the theory of operation
chapter, is the UC Berkeley Ptolemy terminology used.

Table 1-1. Terminology Comparison

Agilent Ptolemy JC Berkeley Ptolemy
Component Star
Network (or circuit) Galaxy

1-2 Timed Synchronous Dataflow Simulator



Table 1-1. Terminology Comparison (continued)

Agilent Ptolemy UC Berkeley Ptolemy
Top-level System Universe

Controller Target

Wire Arc

Data (or signals) Particles (or tokens)

What's in this Manual

The goal of this manual is to teach you how to use the Agilent Ptolemy simulator, how
to cosimulate with Analog/RF Systems designs, and how to build your own signal
processing models for use with Agilent Ptolemy.

In addition, the Signal Processing Components online help and the User’s Guide are
available to help answer questions you may have.

This manual contains:

Chapter 1—Overview of Agilent Ptolemy

Chapter 2—Integrator Example (new user tutorial)
Chapter 3—Data, Controllers, Sinks, and Components
Chapter 4—Understanding Parameters

Chapter 5—Using Data Types

Chapter 6—Understanding File Formats

Chapter 7—Performing Parameter Sweeps

Chapter 8—Using Nominal Optimization

Chapter 9—Theory of Operation

Chapter 10—Introduction to MATLAB Cosimulation
Chapter 11—Cosimulation with Analog/RF Designs
Chapter 12—Using Interactive Controls and Displays
Chapter 13—Building Signal Processing Models
Chapter 14—Writing Component Models

Chapter 15—Data Types For Model Builders

What's in this Manual 1-3
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¢ Chapter 16—Porting UC Berkeley Ptolemy Models
¢ Chapter 17—Glossary

¢ Index
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Chapter 2: Integrator Example

This chapter is designed for the new user. If you know how to Advanced Design
System for Analog/RF Systems design, you can skim this chapter noting the
differences to Agilent Ptolemy, such as the use of sinks, Data Flow controller, and
Interactive Controls and Displays components.

To learn how to use Agilent Ptolemy, let’s load a simple integrator example. We will
add a source, an output display item, and a controller, then simulate and view the
results.

Copying and Opening Example Project

First, we will copy an example project.

Copy the Project

1. From the Main window, choose File > Copy Project . A dialog box appears.

= Copy Project |

From Project: | ich/integratorl3 prj Browse...| Working Directory| Startup Directory| Example Directory |

To Project: | d4/pubs fusers/Lrich/ | Browse...| Working Directory| Startup Directory |

% Copy Project Hierarchy % Open Project After Copy

0K Ccancel Help

Note On UNIX platforms, you do not generally have permission to work in the
Advanced Design System Example directories. You must copy the example project to
a directory for which you have write permission. On PC platforms, while you can
work in the Example directories if you want, it’s better to copy the examples to
another directory.

2. In the From Project field, click the Examples Directory button, and then the
Browse button. The File Browse dialog box appears with the Example
directories listed.

3. Scroll to the bottom of the Directories list and select the /Tutorial directory.

Copying and Opening Example Project 2-1



Integrator Example

4. Select integrator_prj from the list of files in the Files field.

5. In the To Project field, click the Startup Directory or Working Directory button
(depending on where you want to copy the project to) or choose the Browse
button to select another directory.

6. Choose Copy Project Hierarchy . This ensures that all the appropriate directories
and files will be copied.

7. Click OK to copy the project and close the dialog box.

Open the Project

1. From the Main window, choose File > Open Project . When the Open Project
dialog box appears, select <the directory you copied the example to> in the
Directories field, then double-click integrator_prj in the Files field. The project
will appear in the File Browser field of the Main window.

2. Under the integrator_prj project directory, click the Networks subdirectory to
open the various schematics within this project. These will all have the
extension .dsn.

3. Double-click integratorl.dsn . In the Design Information field at the right, one
item appears.

4. Double-click integratorl (Schematic) to open the design. The schematic appears:

2-2  Copying and Opening Example Project
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Figure 2-1. Integrator Design

Selecting and Placing Components

We will add a sine wave source, an output display item, and a controller to the
integrator schematic. There are two ways to choose library components:

¢ From a Palette List The far left side of the window contains a palette list and
icons for each item in the palette. You choose items by first selecting a palette
and then clicking on the icons in the palette.

® From a Library You can also select components by choosing Insert >
Component > Component Library. A dialog box appears that displays
components in each component library. You select items from the list.

Add a Source

1. We will use the Palette List method first (left side of the window). Since the
component we want is in the default library, called Common Components,
simply click the SinGen icon (near bottom of list). Crosshairs and a ghost image
of the component appear as you move the pointer over the design window.

Selecting and Placing Components 2-3
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2.

3.

Move the crosshairs to the upper left part of the schematic (to the left of the
Fork2 component), then click once. A schematic representation of the source
component is placed in the design window. Beneath the schematic is block
representing the component’s name and editable parameters. We will accept the
default values.

If you are finished placing components, click the End Command arrow on the
toolbar, or press Escape . The crosshairs disappear. If you are continuing to place
components, as in this example, you can skip this step.

Note

If you continue to click without deselecting, you will place a new component

with each click.

Add an Output Display

We will continue by adding the output display item. But this time we will use the
Library method of selecting components.

1.

4.

Choose Insert > Component > Component Library . A dialog box appears that
displays components in each component library. From the Libraries list box,
select Interactive Controls and Displays  (resize the dialog box to show long
names).

. From the right side, select TkPlot. Crosshairs and a ghost image of the

component appear as you move the pointer over the design window. (Another
TkPlot item is already in the schematic to display the input signal.)

. Move the crosshairs to the upper right part of the schematic (to the right of the

Fork2 component), then click once. A schematic representation of the TkPlot
display component is placed in the design window. Beneath the schematic is an
options block representing the component’s name and editable parameters.

As explained before, click the End Command arrow on the toolbar, or press
Escape. The crosshairs disappear.

. Close the Component Library dialog box by choosing OK.
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Modify Component Parameters

We will modify two parameters for this item. There are several ways to edit
parameters, including:

* Double-click the top of the component.
* Choose Edit > Component > Edit Component Parameters .
¢ Click the Edit Component Parameters button on the toolbar.

¢ Type the parameter value directly on the schematic page. The text changes
color. Then edit the value and press Return at the right of the new value.
Pressing Return also takes you through subsequent parameters.

We will use the dialog box method.
1. Double-click the TkPlot item. A dialog box appears.

2. Select the xRange parameter (left side). On the right side, backspace over the
100 and type 400.

3. Select the yRange parameter (left side). On the right side, backspace over the
-1.5 1.5 and type 0 32.

4. Similarly, select the Persistence parameter and change the value from 100 to
300.

5. Type Output in the Label field (top of list) so we can keep track of the input and
output plots.

6. Choose OK.

Connect Components with Wires

1. Choose Insert > Wire or click the Insert Wire button on the toolbar (bottom row).
Connect a wire from the port on the SineGen source to the input port on the
Fork2 component. When a port is successfully connected, its color changes from
red to blue.

2. Connect a wire from the top port of the Fork2 component to the port on the
TkPlot display component.

Note Wires must connect ports in pairs, and you must place at least two components
before you can add a wire. You cannot add a wire to a component port first, and then
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add a second component to that wire.

Add a Controller

Controllers are used to specify the type of simulator you want to use and simulation
parameters.

1. From the Palette List under Common Components, select the Data Flow
Controller icon (right, near top). Crosshairs and a ghost image of the component
appear as you move the pointer over the design window.

2. Move the crosshairs to the lower left part of the schematic, then click once.

3. A schematic representation of the controller component is placed in the design
window. Controllers are not connected or wired to other components. We will
accept the default values.

4. Click the deselect arrow, or press Escape. The crosshairs disappear.

There are several types of controllers, the one we have chosen is called the Data Flow
controller, which is used to run mixed numeric and timed signal processing
simulations.

At this point, your example should look similar to Figure 2-2.
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Figure 2-2. Integrator Design After Source, Display, and Controller Items Added.
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If you have had difficulty building the design, you can select the completed schematic
from your directory you copied the example project to earlier. Select
integratorl_complete.dsn.

Starting Simulation

Now that we have a completed schematic, we’re ready to start a simulation. The
Advanced Design System provides flexibility in this task. In our example, we have
placed an interactive display item called TkPlot. This item quickly displays the
results of your simulation. Later we will substitute a “Sink” item in the schematic
that will save the simulation results to a file. We will then use the Data Display to
review our results.

Simulate and Display Data Directly

1. Choose Simulate > Simulate . The simulation begins. A status window appears,
which gives you information on your simulation or reports errors.

2. Two TkPlot windows appear showing you an animated display of both the sine
wave input and the simulation results of the output, as shown below.

Qutput

x10
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Figure 2-3. Integrator Output Simulation Results
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In this simple example, the sine wave source has been changed to a cosine wave
(offset by 90 degrees) by the integrator.

The simulation must be stopped manually. Choose Quit from the small dialog box
labeled Agilent Ptolemy when you are done reviewing the animated plots.

Simulate and Save Data

Now we will use the alternate approach where we substitute a “Sink” component in
the schematic and save the data.

1.
2.

IS NS BN

Click the output TkPlot item in your schematic to select it.

Press the Delete key or choose the Delete (trash can) icon from the toolbar.

. From the Common Components Palette List, select the Numeric icon

(NumericSink). Crosshairs appear.

. Place the NumericSink where the TkPlot item was originally.
. Double-click the NumericSink to edit the sink’s parameters.
. Accept the Start default of DefaultNumericStart .

. Select Stop and change the value to 200. Here we show that a sink can override

the Data Flow controller’s Stop value. Typically, a sink can be left at its default
and you can control simulation from the Data Flow controller.

. Choose OK.

9. Choose Simulate > Simulation Setup. The Simulation Setup dialog box appears.

This step is used when you want to explicitly name a dataset.
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=] Simulation Setup:4
Setup 1 Single | Parallel |

Dataset

ﬂmyresult{ Browse...

Data Display

|_§_inteqrat0r1 Browse...

| Open Data Display when simulation
completes

Simulation Mode

# Single Host

_J) Parallel Hosts

Simulate | Apply | Cancel | Help |

10. In the Dataset field, type myresults . This becomes the filename of your
simulation results. Leave the other defaults as they are.

11. Choose the Simulate button (at bottom). The simulation begins. A status window
appears, which gives you information on your simulation or reports errors.

This time, your data is saved to disk where it can be used to display results in a
variety of formats, or be used in post-processing procedures. In addition, the input
TkPlot displays an animated plot for the input. Click Quit in the Agilent Ptolemy
controller to dismiss this display.

1. Choose Window > New Data Display . The Data Display window opens.

2. From the drop-down list next to Plot Types, select myresults . This list is called
the Default Dataset list.
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3. Click Rectangular Plot in the Plot Types palette list, at the left of the window. A
ghost rectangular frame appears.

4. Click once to place the frame in the Data Display window. A dialog box appears;
follow the instructions in the graphic below:

2 ...then click
Add...

Earar s mal Dogatiers
mprarulin

1 Select data

item N1 here... _

3 ... to select
data you wish to
ST - display
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5. Choose OK. Your data is plotted in the Data Display window, as shown in the
next figure.
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To resize a plot, use the various zoom buttons in the toolbar, or drag a corner
outward. A large variety of graphing, annotation, and post-processing tasks can be
done from this window. Giving the data a unique name allows it to be archived as a
reference in a suite of simulations.

We have seen two methods for displaying data, both of which start with the
placement of an output item in your schematic:

¢ TkPlot (one of several interactive display items), which does not store data to
disk.

¢ The Data Display window, which takes stored data and displays it in a variety
of formats.
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Chapter 3: Data, Controllers, Sinks, and
Components

Before continuing to use Agilent Ptolemy, let’s look at some of the Agilent Ptolemy
concepts you may have questions about and introduce the signal processing
components that Agilent Ptolemy uses.

Representation of Data Types

Agilent Ptolemy schematics contain component stems with single and double
arrowheads as well as stems of different colors and thicknesses. This differs from the
Analog/RF Systems schematics in ADS. Table 3-1 describes the data types and their
representation in the Advanced Design System. A note on terminology: For some
applications, particularly those using timed components, data types can be thought of
as signal types. Regardless of the terminology, packets of data are passed from one
component to another.

Table 3-1. Data Type Representation

Data Type Stem Color Stem Thickness
Scalar Fixed Point Magenta Thin
Scalar Floating Point Blue Thin
Scalar Integer Orange Thin
Scalar Complex Green Thin
Scalar Timed Black Thin
Matrix Fixed Point Magenta Thick
Matrix Floating Point Blue Thick
Matrix Integer Orange Thick
Matrix Complex Green Thick
Any Type Red Thin

Single Versus Multiple Arrowheads

Figure 3-1 shows the thicker stem width associated with matrix data (top) compared
to the thinner stem width associated with scalar data (bottom).
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Figure 3-1. Matrix Data (Thick Lines) Versus Scalar Data (Thin Lines)

Components appear on the schematic with single or multiple arrowheads at inputs or
outputs.

¢ Single arrowheads carry only one distinct signal.
¢ Multiple arrowheads carry more than one distinct signal.

For example, an adder component (Add) has multiple arrowheads on the input pin,
but a single output arrowhead.

BusMerge items can be used to connect multiple signals to a component when the
signal order must be specified. Similarly, BusSplit items can be used to split signals
to multiple outputs.

Automatic or Manual Data Type Conversion

When you connect components of the same data type (color), the data is copied from
one component to another. If you connect components represented by different data
types, such as complex to floating point, or scalar integer to matrix integer, you need
to consider two things about conversion:

Should I place a conversion component in the schematic or let the software
automatically do the conversion? What will happen to my data? These questions are
answered next.
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Although the software will automatically convert dissimilar data types, such as
complex to float, we recommend that you place an appropriate converter (from the
Signal Converters library) in your schematic. This acts as a visual reminder that a
conversion is taking place, and also helps you decode error messages that may arise.
Automatic conversion means that an appropriate converter is “spliced in” behind the
scenes and is not shown on the schematic.

Automatic conversion is allowed among scalar data types and among matrix data
types, but not between scalar and matrix data types.

Timed Component Exceptions

For Timed pins, there are two cases when automatic splicing produces an error
message:

1. When either a Float to Timed, Fixed to Timed, Integer to Timed, or Complex to
Timed converter is placed (or spliced) in the design and there is no time step
defined (via sources or other timed converters) in the design. You need to define
the time step at least once in your design.

2. When a Complex port is connected to a Timed port. Automatic conversion from
Complex to Timed is not supported. You need to place a Complex to Timed
converter between the ports and enter appropriate parameters.

Conversion Between Scalar and Matrix Types

When a scalar pin is directly connected to a matrix pin (or vice versa), without a Pack
or Unpack converter, an error message is generated.

In the Numeric Matrix Library, four converters are used to “pack” scalar data into
matrix data, such as Pack_M and PackCx_M. Similarly, four converters “unpack” the
data (back to scalar), such as UnPk_M and UnPkCx_M. There is no automatic
conversion between scalar and matrix data (or vice versa). You must place the
converters where needed in your design.

What Happens During Conversion?

Most conversions do what you expect. For example, when converting from lower
precision to higher precision data types, such as integer to float, no data is lost; only
the format is changed.
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When converting from higher precision to lower precision data types, such as float to
integer, the outcome is governed by your computer’s math rounding rules, with the
following exceptions:

Complex Data Conversions

¢ Complex to Float—Agilent Ptolemy computes the magnitude and ignores the
phase.

¢ Complex to Fixed—After computing the float magnitude, Agilent Ptolemy
converts the float to fixed.

¢ Complex to Integer—After computing the float magnitude, Agilent Ptolemy
converts the float to integer.

Timed Data Conversions

The Timed data type represents the time-domain signal in either carrier-modulated
(complex) or real-baseband flavors. The Timed data class members are I, Q, F, time,

plus an Agilent Ptolemy member called Flavor. Flavor specifies whether the Timed
data type is in a carrier-modulated or real-baseband format. When the carrier
frequency is not specified (undefined) for a Timed port, an error message is
generated.

You can convert between Timed and non-Timed ports by placing one of the following
converters and supplying the parameters as needed:

¢ Timed to Complex or Complex to Timed
¢ Timed to Float or Float to Timed

* Timed to Fixed or Fixed to Timed

¢ Timed to Integer or Integer to Timed

Time-data conversion depends on the flavor of the Timed data and the carrier
frequency.

For more detailed information on conversion of data types, refer to “Conversion of
Data Types” on page 5-5.
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Controllers

Controllers are used to control simulation, are placed unconnected anywhere in the
schematic, and are found in the Controllers library or palette. The main Agilent
Ptolemy controller is the Data Flow controller, and it is required for all simulations.
This controller, together with the source and sink components, provide you the
flexibility to control the duration of simulation globally or locally. Other controllers
are used to set up parameter sweeps, optimization, or statistical design.

To set or modify the parameters using a dialog box, double-click the component in the
schematic, or choose Edit > Component > Edit Component Parameters. The Data Flow
controller dialog box has five tabs: Controls, Options, Resistors, Debug, and Display,
as shown below.

=] Data Flow Controller:1 |

DF Instance Hame
B
Cnntmls] Options 1 Resistursl Debug 1 Display 1

DefaulthumericStart |

DefaultHumericStop | 106

DefaultTime Start 1] usec ¢ |
DefaultTime Stop 10g, usec ¢ |

oK | Apply | Cancel| Help |

The following information will help you understand the controller’s use:
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Controls Tab

Cuntmls} Options | Resistors| Debug | Display |

DefaultNumeric Start | i

DefaulthumericStop | 106

DefaultTime Start 1] usec ¢ |
DefaultTime Stop 10 usec £ |

oK | Apply | Cancel| Help |

Agilent Ptolemy sinks have Start and Stop parameters that control when to start and
stop data collection. Sinks collect from Start to Stop, inclusively.

In numeric sinks, these numbers are unitless because they represent sample
numbers. The first datum that the sink receives is #0, the second is #1, etc. For
example, a numeric sink with Start=3 and Stop=4 will skip the first three pieces of
data and collect the next two.

In timed sinks, Start and Stop have timed units because the data has a time base.
The amount of data that the sink collects is a function of both the data time base and
the sink’s Start and Stop parameters. For example, if Start=0 msec, Stop=1 msec, and
the data has a time base of 2 usec, the sink will collect 501 pieces of data.

The Controls tab contains global parameters that are the default values for the sink’s
start and stop parameters. Numeric sinks’ start and stop parameters are set to
DefaultNumericStart and DefaultNumericStop . Timed sinks’ start and stop parameters
are set to DefaultTimedStart and DefaultTimedStop . The default values for these Data
Flow controller values are 0, 100, 0 usec, and 100 usec, respectively.

Sinks can control simulation locally with their own start and stop times, or they can
use the appropriate Data Flow parameter to inherit control. By default, all sinks
inherit start and stop times from the controller. You can inherit none, one, or both of
the start and stop times.

Because these Data Flow parameters function as variables inside the simulation,
they can be used inside expressions or overridden in a hierarchal fashion. For
example, you could set a numeric sink’s parameters to Start=DefaultNumericStart
and Stop=DefaultNumericStop*2.
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Options Tab

 Controls |{ Opiions ] Resistors| Debug | Display |

DefaultSeed | 1234567

Outvar B

SchedulerType Cluster Loop Schedul _"l

DeadlockManager Eeport deadlock _"l

oK | Apply | Cancel| Help |

The options tab has the following parameters:

DefaultSeed Enter an integer to seed the random number generator. The default is
1234567.

The DefaultSeed parameter is used by all random number generators in the
simulator, except those components that use their own specific seed parameter.
DefaultSeed initializes the random number generation. The same seed value
produces the same “random” results, thereby giving you predictable simulation
results.

To generate repeatable “random” output from simulation to simulation, use any
positive seed value. If you want the output to be truly random, enter the seed value
of 0.

OutVar OutVar is a space-separated list of variable names defined using variables
and equations (VAR) components. The values of these variables will be sent to the
Data Display window. In the case of hierarchical designs, in order to send variables
that are at a level other than the top-most level, use the complete path to the
variables, which must be period ‘.’ delimited.

Example:
OutVar=“freql freq2 X1.amplitude X2.X4.temp”

In this case, there are four variables to be sent to the Data Display: freql, freq2,
amplitude, and temp, each separated with a space. The variable amplitude is
contained in subnetwork X1, while the variable temp is contained in subnetwork
X4, which in turn is contained in subnetwork X2. These subnetworks are delimited
with periods.
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Note ADS puts a set of quotes around the OutVar variable. Do not type your own
quotes or the double set will cause simulation to fail.

SchedulerType  Select a Scheduler Type from the drop-down list. The choices are:

® Cluster Loop Scheduler (default)—Optimized for multirate graphs with
feedback cycles.

® (Classical Scheduler—Better for uni-rate graphs with cycles.
¢ Acyclic Loop Scheduler—Better for multirate graphs with no cycles.

The Scheduler Type option allows you to run the simulation based on one of three
options. No matter which scheduler is chosen, the simulation results will be the
same. The difference is in the time and memory needed to set up the simulation
schedule. It’s best to start with the default, and experiment with the others as

needed. For more information on these schedulers, refer to “How Schedulers Work
in Agilent Ptolemy” on page 9-4.

DeadlockManager The Deadlock Manager allows you to manage deadlocks in
designs. A deadlock in a design occurs when a feedback loop does not have a delay in
its feedback path, or when a Delay item does not initialize the proper number of
signal tokens. A static schedule (required for simulation) can only be derived in a
design with no schedule deadlocks.

Select the type of deadlock management from the drop-down list:
* Report deadlock (default) indicates the design includes deadlocks.

¢ Identify deadlocked loops allows the user to spot which loops are deadlocked.
These loops can be highlighted on the schematic page by double-clicking on the
error message or Status window.

® Resolve deadlock by inserting tokens will add delays to deadlock loops and allow
the simulator to proceed.
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Resistors Tab

DefaultRIn ’m None _.r|
DefaultROut ’m None _.r|
DefaultRLoad ’m None _.r|
DefaultRTemp | -273.15  Cels /|

oK | Apply | Cancel | Help |

The Resistors tab controls global parameters related to resistor behavior. As in the
Controls tab, these parameters act as variables inside the simulation. Overriding the
resistor values in a hierarchal fashion can be especially useful. For example, a large
design can have a subcircuit representing a component being tested. By setting the
DefaultRTemp inside the Data Flow controller to -273.15, and placing a VAR block
with a DefaultRTemp setting inside the subcircuit, you can easily add resistor noise
to the subcircuit and nowhere else.

DefaultRIn is the default input impedance of timed components. Its value is 50 ohms.

DefaultROut is the default output impedance of timed components. Its value is also 50
ohms.

DefaultRLoad is the default input impedance of timed sinks and the default
impedance of solitary resistors (the R component). Its value is 1.0e15 ohms,
representing an infinite load.

DefaultRTemp is the default temperature of resistors. Its value is -273.15 Celsius (0
K), so by default there is no thermal noise.
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Debug Tab

Schedule Log File |

Profile Times File |

oK | Apply | Cancel| Help |

The Debug tab can be used to provide the ability to debug your design and its custom
components. There are two fields in this tab:

e Schedule Log File

* Profile Times File

You can specify a filename in the Schedule Log File field. After a simulation is
finished, the log file you specified will be generated under the /data directory of the
project. It will log the firing schedule of the components in your design.

You can also specify another filename in the Profile Times File field. After a
simulation is finished, the file will also be located under the /data directory of the
project. It provides runtime information on the components in your design during
simulation. For example, the number of times a component is fired or the average
time.
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Display Tab

— Display parameter on schematic —
M DefaulthumericStart =
X DefaultNumeric Stop
setAll |  dcearan |
oK | Apply | Cancel| Help |

From the display tab, you can choose which parameters will be displayed on the
schematic. By default, only some of the parameters will be displayed on the
schematic:

¢ DefaultNumericStart
¢ DefaultNumericStop
¢ DefaultTimedStart
¢ DefaultTimedStop

You can add or subtract parameters you want to be displayed on the schematic by
scrolling through the list.

Sources and Sinks Control the Simulation

Agilent Ptolemy simulation is controlled by the sources and sinks you place on your
schematic. All sinks and many sources have a ControlSimulation parameter that is
either YES or NO. Controlling sinks and sources keep the simulation running, and

non-controlling sinks and sources do not. There must be at least one source or sink

that is controlling the simulation.

Sinks

Sinks are components with no outputs. When a sink is controlling the simulation, it
will keep the simulation running long enough to satisfy its start and stop times. (One
or both of the start and stop times might be inherited by the Data Flow controller.) By
default, a sink’s ControlSimulation parameter is set to YES. When a sink is not
controlling the simulation, it will start collecting data at Start, and then collect as
much data as the simulation produces. Consider the following example:
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@—P-——-—b } [

Numer | ¢
Sinetien DownSample MHumericSink
51 )] 1
RadiansPersample=pifal Factor=2 Flot=Rectangular
InitialRadians=0 Phase=0 ControlSimulation=YES

Start=DefaultMumericStart
Stop=DefaultMumericStap

I
DF h IZ:Z:I
OF Mumeric
DefaulttumericStan=0 MHumericSink
DefaulttumericStop=100 M2
DefaullTimeStant=0 uzec Flot=Rectangular
DefauliTimeStop=100 usec CaontrolSimulation="ES

Start=DefaulttumericStart

Stop=DefaultMumericStop

As shown, both sinks will collect 101 data samples (0 to 100 inclusive). They are both
controlling sinks so they will obey their start and stop times. Because of the
DownSample, sink N2 will receive more data but it will not collect it.

Changing one of the sinks ControlSimulation parameters to NO will cause N2 to
collect twice as much data as N1. If N1 is the controller, then it will collect 101
samples, and N2 will collect 202. If N2 is the controller, then it will collect 101
samples, and N2 will collect 50.

This example demonstrates a useful way to design a schematic with multiple sinks.
Choose one sink to control the simulation, and set all other sinks’ ControlSimulation
parameters to NO. In this manner, your sinks will collect appropriate amounts of
data according to the multirate characteristics of your schematic.

Sources

Sources are components with no inputs. Sources that read from files, instruments,
and data sets also have a ControlSimulation parameter. By default, its value is NO.
When a source is controlling the simulation, it will keep the simulation running long
enough to output all its data. Controlling sources can be used to create designs that
process all the data in a file, as shown in the next figure.

3-12 Controllers



)

SDFRead TimedSink

= T

FileMame="trace1. dat" Flot=Rectangular

ControlSimulation=YES Stant=DefaultTimeStart

Periodic=YES Stop=DefaultTimeStop
ControlSimulation=N0

l#
DF
DF

DefaultMumericStart=0
DefaultMumericStop=100
DefaultTimeStart=0 usec
DefaultTimeStop=100 usec

In this example, the SDFRead component is controlling the simulation, and the
TimedSink parameter is not in control. The TimedSink will collect all the data
available in the file. This example demonstrates another useful way to design
schematics: control the simulation with a source, and set all the sinks’
ControlSimulation parameters to NO.

In the example, if both components’ ControlSimulation parameters were flipped so
that only the TimedSink was in control, then it would collect enough data to meet its
Start and Stop parameters. If that were more data than was available in the file, then
the SDFRead component would repeat its data or zero pad according to its Periodic
parameter. If that were less data than was available in the file, then the SDFRead
would not output the entire file.

It’s possible to set both components’ ControlSimulation parameters to YES. In that
case, and if the file had more data than the TimedSink’s Start and Stop required,
then the SDFRead would output the entire file, but the TimedSink would ignore any
data received after its Stop.

Multiple DF Controllers on the Schematic Are Not Allowed

Previous versions of Agilent Ptolemy (before ADS 1.5) allowed multiple Data Flow
controllers on the same schematic, but this is no longer possible. Multiple controllers
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were used to simulate the same design with different Data Flow parameters, for
example with a different value of DefaultNumericStart. You can achieve the same
effect by using single-point sweeps on the parameter you are interested in varying.
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Agilent Ptolemy Components

The component libraries available for use with signal processing designs using the
Agilent Ptolemy simulator are shown below. Reference information for each
component is available by choosing Help, either from the parameters dialog box for a
specific component, or from the Help menu.

Get to know the available components by choosing Insert > Component > Component
Library, resizing the dialog box so you can read the complete names, and browsing
through the list. Table 3-2 summarizes the libraries and their contents.

Table 3-2. Agilent Ptolemy Component Libraries

Library

Summary of Contents

Antennas & Propagation

Contains components dealing with the radio channel,
including antennas and propagation models. The channel
models provide built-in functionality based on various
standards, e.g., GSM, TDMA, CDMA.

Circuit Cosimulation

Contains items used to set up cosimulation with analog/RF
circuits.

Common Components

A factory list of the most commonly used components taken
from the remainder of the libraries.

Controllers Items that control simulation parameters.
HDL Blocks Components needed for HDL cosimulation.
Instruments Contains components used to link data to instruments, such

as the Agilent 89400 Vector Signal Analyzer.

Interactive Controls and Displays

Components that control and interactively display real-time
simulation results. Data is not saved.

Numeric Communications

Contains numeric communications functions, such as
ADPCM coder, QAM encoder, Viterbi decoder, modulation,
demodulation, scrambler, spreader.

Numeric Control

Items that manipulate the flow of data during simulation, such
as commutators, multiplexers, demultiplexers, upsamplers,
forks, etc.

Numeric Logic

Contains Boolean operators, such as and, or, equals, greater
than, etc.

Numeric Math

Contains math functions, such as adders, multipliers,

integrators, log, sine, cosine, etc.
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Table 3-2. Agilent Ptolemy Component Libraries (continued)

Library

Summary of Contents

Numeric Matrix

Contains components that receive and/or produce vector or
matrix signals at their input and output, such as add and
multiply. Also contains MATLAB components and
components used for converting scalar to matrix.

Numeric Signal Processing

Contains basic discrete-time DSP functions, such as FIR
filter, IIR filter and adaptive filter, DTFT, etc.

Numeric Sources

Contains sources (items having only output) that produce
numeric signals. This includes sources that output scalar,
matrix, and random signals.

Numeric Special Functions

Miscellaneous items. Typically nonlinear operations such as
quantizing, limiting, or triggering on input signals.

Numeric Synthesizable DSP

Bit-accurate DSP models (adders, registers, etc.) with
behavioral C++ simulation code and Verilog and VHDL
synthesizable code.

Signal Converters

Converts signal (data) types, from one type to another, for
example, CxToFloat (complex to float). Others include
integer, fixed, or timed.

Sinks

Data collection items or data processed as measurements,
such as numeric sink, BER sinks, or EVM sink.

Timed Data Processing

Contains data processing components that operate on
time-domain baseband waveforms, e.g., multilevel symbol
coders and converters, 1Q data coders.

Timed Filters

Contains time-domain lowpass and bandpass analog filters
for filtering baseband or RF signals.

Timed Linear

Contains various linear operations for time-domain analog
baseband and RF signals, e.g., waveform delay, split, sum,
sample, switch.

Timed Modem

Contains analog RF modulators, demodulators, and carrier
recovery for AM, FM, PM, QAM, QPSK, GMSK, MSK,
DQPSK, and Pi/4 DQPSK formats.

Timed Nonlinear

Contains various nonlinear time-domain operations for
time-domain analog baseband and RF signals, e.g.,
nonlinear gain, RF mixers, RF multipliers, rectifiers, signal
sampling, or phase detectors.
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Table 3-2. Agilent Ptolemy Component Libraries (continued)

Library Summary of Contents

Timed RF Subsystems Contains various RF subsystem components, such as RF
combiner, RF modulator, or RF demodulator.

Timed Sources Contains various time-domain signal generators for
baseband and RF signals, e.g., AM, FM, PM, QAM, clock,
sinusoid, pulsed, or video.

Note Ifyou have purchased and installed ADS Design Library products, such as the
CDMA, GSM, W-CDMA, cdma2000, EDGE, DTV, 1xEV, WLAN, or W-CDMA3G
design libraries, they will be displayed in the list, in alphabetical order.
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Chapter 4: Understanding Parameters

Value Types

Agilent Ptolemy requires specific parameter value types (such as string, real array, or
complex) for the component parameter values you enter in schematic designs. They
are called value types.

Component parameter values may be entered several ways by:

¢ Editing the Component Parameters dialog box. Double-click the component
symbol on the schematic, a dialog box appears. Parameter values may be
selected from lists or entered. The dialog box lists the value type expected, such
as real or integer.

¢ Editing values directly on the schematic. Click the parameter value and type.

¢ Editing default values in the Design Definition dialog box. Choose File >
Design [ Parameters > Parameters tab. A type of parameter value can be selected
from the Value Type list, and a default value can be entered in the Default
Value field.

This section describes these value types. Table 4-1 lists each value type and its use:

Table 4-1. Ptolemy Parameter Value Types

Value Type Description

Real Editing in Component Parameter dialog box:

A. Enter real number.

B. Enter expression for a real value—Example: X*cos(Y), where X and Y are
defined expressions.

Parameter editing on schematic: Highlight parameter value on schematic and
enter real value or expression.

Integer Editing in Component Parameter dialog box:

A. Enter integer.

B. Enter expression for an integer value—Example: X+Y, where X and Y are
defined expressions.

Parameter editing on schematic: Highlight parameter value on schematic and
enter integer value or expression.
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Table 4-1. Ptolemy Parameter Value Types (continued)

Value Type Description

Fixed Point Parameter editing in Component dialog box:
A. Enter real value, but the value used will be based on the precision used with
this parameter.
B. Enter expression for a real value—Example: X*cos(Y), where X and Y are
defined expressions.
Parameter editing on schematic: Highlight parameter value on schematic and
enter real value or expression.

Complex Editing in Component Parameter dialog box:
A. Enter a complex number using the form Re +j * Im.
B. Enter expression for a complex value—Example: cos(X)+j*sin(Y), where X
and Y are defined expressions, j is the imaginary operator.
Parameter editing on schematic: Highlight parameter value on schematic and
enter complex value or expression.

String Editing in Component Parameter dialog box:
A. Enter string. Do not enclose this string with any double quote symbols. Note
for embedded double quotes (), use double double quotes (*“).
B. Enter value by reference—Example: @Y, where Y is a the name of a Variable
or Expression for a string value.
Parameter editing on schematic: Highlight parameter value on schematic and
enter string value enclosed with double quote symbols.

Precision Editing in Component Parameter dialog box:
A. Enter string in the form X.Y or Y/W. Do not enclose this string with any double
guote symbols. The form X.Y, such as 8.24, means that there are X bits
(including sign bit) to the left of the decimal point, and Y bits to the right of the
decimal point. The form Y/W, such as or 24/32, means that there are Y bits to
the right of the decimal point and W bits total. Note that X+Y=W.
B. Enter value by reference—Example: @Y, where Y is a the name of a Variable
or Expression for a precision value.
Parameter editing on schematic: Highlight parameter value on schematic and
enter string value enclosed with double quote symbols.
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Table 4-1. Ptolemy Parameter Value Types (continued)

Value Type Description

Filename Editing in Component Parameter dialog box:

A. Enter string for the name of a file including the pathname and select an
extension type. The filename may include environment variables such as ~/,
$HOME, $HPEESOF_DIR, or others.

B. Enter value by reference—Example: @Y, where Y is a the name of a Variable
or Expression for a filename value.

Parameter editing on schematic: Highlight parameter value on schematic and
enter string value enclosed with double quote symbols.

Integer Array Editing in Component Parameter dialog box:

A. Enter integer values directly—Example: 1 3 -2 5 (spaces separate data).
B. Enter values from a file—Example: <filename. If the filename has no path
specified, the project data directory is used. The content of the file must be
numbers separated by spaces or on a new line. For example:

1-2

52

and

1

-2

5

2

are equivalent.

C. Enter values directly in addition to file data—Example: 1 <filel 2. If filel
contains -2 5, then the array would be the same as in A.

D. Enter value by reference—Example: @Y, where Y is a the name of a Variable
or Expression for an integer array.

Parameter editing on schematic: Highlight parameter value on schematic and
enter array value enclosed with double quote symbols.

Value Types 4-3




Understanding Parameters

Table 4-1. Ptolemy Parameter Value Types (continued)

Value Type

Description

Fixed Point Array
or
Real Array

Editing in Component Parameter dialog box:

A. Enter fixed-point values directly—Example: 1.2 -2.3 5.6 2.8 (spaces separate
data).

B. Enter values from a file—Example: <filename. If the filename has no path
specified, the project data directory is used. The content of the file must be
numbers separated by spaces or on a new line. For example:

1.2-23

5.62.8

and

1.2

-2.3

5.6

2.8

are equivalent.

C. Enter values directly in addition to file data—Example: 1.2 <filel 2.8. If filel
contains -2.3 5.6, then the array would be the same as in A.

D. Enter value by reference—Example: @Y, where Y is a the name of a Variable
or Expression for a fixed-point or real array.

Parameter editing on schematic: Highlight parameter value on schematic and
enter array value enclosed with double quote symbols.
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Table 4-1. Ptolemy Parameter Value Types (continued)

Value Type Description

Complex Array Editing in Component Parameter dialog box:

A. Enter complex values directly as ordered pairs separated by a comma—
Example: (1.2, 2.5) (-2.3, 1.3) (5.6, -1.4) (2.8, 3.4)(each ordered pair is enclosed
with parentheses, spaces separate each ordered pair of data).

B. Enter values from a file—Example: <filename. If the filename has no path
specified, the project data directory is used.The content of the file must be
numbers separated by spaces or on a new line. For example:

1225

2313

56-1.4

2834

and

1.2

25

-2.3

1.3

5.6

-1.4

2.8

34

are equivalent.

C. Enter values directly in addition to file data—Example: (1.2,2.5) <filel
(2.8,3.4). If filel contains -2.3 1.3 5.6 -1.4, then the array would be the same as
in A.

D. Enter value by reference—Example: @Y, where Y is a the name of a Variable
or Expression for a complex array.

Parameter editing on schematic: Highlight parameter value on schematic and
enter array value enclosed with double quote symbols.
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Table 4-1. Ptolemy Parameter Value Types (continued)

Value Type

Description

String Array

Editing in Component Parameter dialog box:

A. Enter string values directly—Example: “Button 1” “Button 2" “Button 3"(each
string is enclosed with double quote marks, spaces separate each string).

B. Enter values from a file—Example: <filename. If the filename has no path
specified, the project data directory is used. The content of the file must be text
separated by spaces or on a new line. For example:

“Button 1” “Button 2” “Button 3"

and

“Button 1”

“Button 2”

“Button 3”

are equivalent.

C. Enter values directly in addition to file data—Example: “Button 1" <filel
“Button 3". If filel contains “Button 2,” then the array would be the same as in A.
D. Enter value by reference—Example: @Y, where Y is a the name of a Variable
or Expression for a string array.

Parameter editing on schematic: Highlight parameter value on schematic and
enter array value enclosed with double quote symbols.

Enumerated Type
(with form specific
to the component)

Editing in Component Parameter dialog box:

A. Select enumerated type from selection list specific to the component
parameter. For example, Time Unit (milliseconds, etc.) is an Enumerated Type
you choose from a list. The Data Flow Controller parameter Scheduler Type is
also an Enumerated Type.

B. Select the “Standard” enumerated type and enter an integer value in the
entry field provided. The integer value is associated with an option in the
selection list with the first selection list entry associated with the integer 0,the
second entry with the integer 1, etc.

C. Select the “Standard” enumerated type and enter the expression in the entry
field provided for an integer value—Example: X+Y, where X and Y are defined
expressions.

Parameter editing on schematic: Highlight parameter value on schematic and
enter enumerated value, or use the up or down arrow keys on the keyboard to
scroll through the enumerated options available.

All of the above parameter types, except the Enumerated type, are directly available
to define parameters in a schematic design.

To define or see the list of value types for a schematic design, from a Signal
Processing Schematic window, choose File > Design / Parameters > Parameter. The list
of parameter types available for a schematic design can be seen by selecting the
Value Type drop-down list.
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To use the Enumerated type for a schematic design, you must edit the design AEL file
(located in the project networks directory) and implement the AEL code for the
desired Enumerated type. Examples of AEL for Enumerated types can be observed in
the file: $HPEESOF_DIR/hptolemy/ael/stars.ael.

Parameter Editing

When an instance of a component or design is placed on the schematic, its
parameters can be viewed below its symbol.

The default is for parameters to be visible on the schematic. To enable parameter
visibility on the schematic, check two areas. From the Schematic window, choose
Options >Layers, a dialog box appears. In the Layers list (left), select Parameters.
Make sure that the Visible box is checked (center). Next double-click any component
in the schematic. This displays the component parameters dialog box. Make sure that
the Display parameter on schematic box (lower-center) is checked.

To illustrate this procedure, we will place an instance of the FreqPhase component.
1. Choose Insert > Component > Component Library .

2. From the Library list, select Numeric Communications and then FreqPhase from
the Components list on the right.

3. Next place this component on the schematic.

Observe that its parameters (visible below its symbol on the schematic) are
SampleRate, PhaseditterFrequencyHz, FrequencyOffsetHz, and
PhaseditterAmplitudeDeg, as shown in the figure below. This component is actually a
schematic design that we will look at in more detail.:

ol [t

FreqgPhas=a

F1

Somp l.efRote=2%pi .
PhusadlttarFraquancsz—D u}
FrequencydffsetHz=0,0. .
Phasalitterdmp T tudeleg=0C, li}
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Notice that each parameter has a numeric value. These values could just as easily be
an expression. Note that the SampleRate parameter is given as an expression, 2%pi.
The full features of Advanced Design System expressions are discussed in the
Expressions, Measurements, and Simulation Data Processing manual.

To observe the detail of the schematic design associated with the FreqPhase
component, click the symbol to highlight it, then choose View > Push into Hierarchy
or click the Push into Hierarchy button (down arrow icon) from the toolbar. When this
is done for FreqPhase, the schematic shown below appears..

A
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Notice that the various components in this schematic reference the top-level
FreqPhase parameters by name. The top RampFloat component has its Step
parameter equal to 2*T*FreqOffsetHz/SampleRate, where FreqOffsetHz and
SampleRate are value passed in from the top level.

To observe the parameters defined (or to define additional parameters) for this
schematic design, choose File > Design [ Parameters. The Design Definition dialog box
appears. Select the Parameters tab and you will observe fields to enter parameter
definition information. For more information on the Design Definition dialog box
refer to Chapter 4, Creating Hierarchical Designs in the User’s Guide.

Parameter Expressions

Parameter values can be arithmetic expressions. This is particularly useful for
propagating values down from a top-level system parameter to component
parameters down in the hierarchy. An example of a valid parameter expression is:
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X = pi/(2*order)

where order is a parameter defined in the network or top-level system, and pi is the
built-in constant p. The basic arithmetic operators are addition (+), subtraction (-),
multiplication (*), division (/), and exponentiation (). These operators work on
integers and floating-point numbers. Currently, all intermediate expressions are
calculated in double-precision values and only the final value is converted to the type
of the parameter being computed. Hence, it is necessary to be very careful when, for
example, using floating-point expressions, to compute an integer parameter. In an
integer parameter specification, all intermediate expressions will be calculated with
double-precision floating-point values and the final value is cast to an integer value.

Complex-Valued Parameters

When defining complex values, the basic syntax is
real + j*imag
where real and imag evaluate to double-precision, floating-point values, which

may be numbers or expressions, and where j is the imaginary operator.

There are also other functions in Agilent Ptolemy that can be used with complex
values. These include:

* An expression/function that returns a Cartesian form: complx (X, Y).

* An expression/function that converts a polar form to Cartesian form: polar (X,
Y), where X is magnitude and Y is in degrees.

¢ An expression/function that converts a decibel form to a Cartesian form:
dbpolar (X, Y), where X is in decibels and Y is in degrees.

Parameters for Fixed-Point Components

Many of the fixed-point components used in Agilent Ptolemy utilize one or more
common parameters that identify the specific characteristics of the finite-precision,
fixed-point value. These include characteristics specifying overflow, overflow
reporting, quantization, finite precision bit format, and more. The following describes
several properties in common use by these components.

1. Parameters specifying fixed-point value precision are typically labeled
“Precision,” “InputPrecision,” “OutputPrecision,” or some other token
containing “Precision.”
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Fixed-point parameter precision is defined by either of two types of syntax:
Syntax 1

As a string such as “3.2”, or more generally “m.n”, where m is the number of
integer bits (to the left of the binary point) and n is the number of fractional bits
(to the right of the binary point). Thus length is m+n.

Syntax 2

A string like “24/32” which means 24 fraction bits from a total word length of
32. This format, n/w, is often more convenient because the word length often
remains constant while the number of fraction bits changes with the
normalization being used.

In both cases, the sign bit counts as one of the integer bits, so this number must
be at least one. The maximum value of w (or x+y) is 256.

Thus, for example, a fixed-point value of 0.8 may have a precision defined as 2/4.
This means that a 4-bit word will be used with two fraction bits. Since the value
“0.8” cannot be represented precisely in this precision, the actual value of the
parameter will be rounded to “0.75.”

When an input pin with an associated fixed-point signal class (scalar or matrix)
receives another class of signal (scalar or matrix, respectively), the received
signal is automatically converted to the fixed-point class. A pin specified for use
with fixed-point scalar signals does not accept any matrix class signals, and vice
versa. The automatic conversion from timed, complex or floating-point signals
to a fixed-point signal uses a default bit width of 32 bits with the minimum
number of integer bits needed to represent the value. For example, the
automatic conversion of the float value of 1.0 creates a fixed-point value with
precision of 2.30, and a value of 0.5 would create one of precision of 1.31. For
details on data/signal conversion rules, refer to “Conversion of Data Types” on
page 5-5.

2. The parameter used to specify the arithmetic form of a fixed-point value is
labeled ArithType. This parameter is an enumerated type with two options:
TWOS_COMPLEMENT and UN_SIGNED. The fixed-point components in the
Numeric Synthesizable DSP library may use either arithmetic form. However,
fixed-point components outside the Numeric Synthesizable DSP library may
only use the TWOS_COMPLEMENT form, which is the default.

3. The parameter used to specify the quantization property of a fixed-point value
is labeled RoundFix. This parameter is an enumerated type with two options:
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ROUND and TRUNCATE. The quantization property is used to convert a
floating-point value to its fixed-point value. The ROUND quantization property
causes this float-to-fixed transformation to occur such that the nearest
fixed-point value to the floating-point value is used. For example, consider the
floating-point value 0.1. It is not possible to represent this number exactly as a
two’s complement fixed-point value. Remember that a fractional decimal
number is represented in its fixed-point form by composing it of the summation
of fractional powers of two (2°(-N) ). 0.1 is represented as
0.0001100110011...with an infinite number of fractional binary terms. If the
precision is 2.8 and the quantization is ROUND, then this above fixed-point
value is rounded up to the nearest fractional power of 2*(-8) which is
0.00011010. If the precision remains at 2.8 and the quantization is
TRUNCATE, then the value is truncated to 0.00011001.

. The parameter used to specify the overflow properties of fixed-point
mathematical operations is labeled OverflowHandler or OvfiwType. Both of
these are an enumerated type. The OverflowHandler parameter has four
options: wrapped, saturate, zero_saturate, or warning. The OvflowType
parameter has two options: wrapped or saturate. The OvflwType parameter is
used only by fixed-point components in the Numeric Synthesizable DSP library.
The OverflowHandler is used by all other fixed-point components. The overflow
parameter specifies the overflow characteristic to use when the result of a
fixed-point operation cannot fit into the precision specified.
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Consider a fixed-point ramp data source (RampFix) as shown in the following figure.
It has a step size of 0.2, initial value of 0, output precision of 2.14, with round type
quantization.
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QutputPresiasisn="2_74" Stop=Dafaul tHumericStep
Step=1.0
Yalue=0.0
I oF I
DF
DF

Defaul tNumericStart=0
Defaul tHumer icEtap=100
DefoultTimeStart=0 u=sec
Defaul tTimeStap=100 usec

Figure 4-1. Schematic Using the RampFix Component
When the OverflowHandler is set to wrapped, the following data display results:
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Figure 4-2. Simulation Plot with Overflow Handler Set to Wrapped

Note that as a 2’s complement signal, the maximum value for a 2.14 precision with
rounding is nearly 1.9 and the minimum value is nearly —2.0. There are actually
more decimal places in these values due to the quantization of the step size. This
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maximum and minimum is obtained by first converting the step size of 0.2 into its
fixed-point form with 2.14 precision. This becomes the step size for the fixed-point
ramp accumulation. The signal begins at zero, and increments by the fixed-point
binary representation of 0.2 with each sample. When the maximum value is
reached, the output wraps to the minimum value for the given precision and
quantization.

When the above example uses the truncate type of quantization the following data
display results:

2
= 14
x .
R O_
. ]
o8 -
£ -1
= ]
“ ]
_2 ] T I 1 I T I T I T
0 20 49 80 80 100

I ndex
Figure 4-3. Simulation Plot with Truncate Quantization

Note that as a 2’s complement signal, the maximum value for a 2.14 precision with
truncation is 2.0, and the minimum value is -1.9. The signal begins at zero, and
increments by 0.2 with each sample. When the maximum value is reached, the
output wraps to the minimum value for the given precision.
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With truncation used, but with overflow set to saturate, the following data display
results:

7.0
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Figure 4-4. Simulation Plot with Truncate Quantization
and Overflow Handler Set to Saturate

Note that when the ramp rises to 2.0, it stays constant at that level.
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With truncation used, but with overflow set to zero_saturate, the following data
display results:
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Figure 4-5. Simulation Plot with Truncate Quantization
and Overflow Handler Set to Zero_Saturate

Note that when the ramp rises to 2.0, it resets to the value of zero and continues to
rise.

Parameters for Fixed-Point Components  4-15



Understanding Parameters

Again with truncation used, but with overflow set to warning the following data
display results:
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Figure 4-6. Simulation Plot with Truncate Quantization
and Overflow Handler Set to Warning

Note that the saturate characteristic is used. Additionally, the warning mode
results in ReportOverflow (explained below) being set to REPORT. This reports the
number of overflows at the end of the simulation.

5. The parameter used to specify whether overflow is reported is labeled
ReportOverflow. This parameter is an enumerated type with two options:
REPORT and DONT_REPORT. Consider the preceding overflow displays. For
each of the cases, when the ReportOverflow parameter is set to REPORT a
warning message is displayed in the Simulation/Synthesis Messages window
after simulation. In the previous simulation for the zero_saturate data display,
the warning is:

1: R1: experienced overflow in 9 out of 102 fixed-point calculations checked
(8.8%)

When you click this message, the RampFix component with the name R1 is
highlighted in the schematic window.

When the ReportOverflow parameter is set to DONT_REPORT, this warning
message does not appear.
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6. The parameter used to specify whether a component is to use the input signal
with its arriving precision, or whether this signal is to be cast into another
component’s specific precision is labeled UseArrivingPrecision. This parameter
is an enumerated type with two options: NO or YES. This parameter is used
with the InputPrecision parameter. When UseArrivingPrecision = NO, the
input signal is cast to the precision specified by InputPrecision. Otherwise, the
input signal’s precision is used.

String Parameters

String parameters are assigned a text value that may include any alpha-numeric
symbol, including spaces and other punctuation symbols. If a double-quote symbol ()
is to be used, it must be used with two such sequential symbols (““) and will be
interpreted as only a single, double-quote symbol.

Filename Parameters

Filename parameters are assigned a filename value that may include the file path
name and environmental variables such as ~/, $HOME, $HPEESOF_DIR, or others.
If no path name is provided, the current project data subdirectory is the assumed
path for the file.

Array Parameters

When defining arrays of integers, floating-point numbers, complex numbers,
fixed-point numbers, or strings, the basic syntax is a simple list separated by spaces,
as shown in the following example:

12345

defines an integer array with five elements. Repetition can be indicated using the
following syntax, value[n], as demonstrated in the following example:

123[10]14 5

where n is an integer. This example has ten instances of the value 3. An array or
portion of an array can be input from a file using the symbol “<” as shown in the
following example:

1 2 < filename 3 4
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Here the first two elements of the array will be 1 and 2, the next elements will be
read from file filename, and the last two elements will be 3 and 4. This latter
capability can be used in combination with the WaveForm component to read a signal
from a file.

When defining complex array values, the basic syntax is
(1.2,2.5)(-2.3,1.3)(5.6,-1.4) (2.8, 3.4)

where all entered complex values are ordered pairs of real and imaginary values of
complex numbers enclosed in parentheses and all entries must be numbers.

When defining string array values, the basic syntax is
“Button 1” “Button 2” “Button 3”

where all entered string values are enclosed in double quote symbols.

Reading Array Parameter Values From Files

The values of all array parameter types can be read from a file. The syntax for this is
to use the symbol “<” as in the following example:

< filename
or
1.2 2.6 <filename 2.8 6.4

If the filename has no path specified, the project data directory is used. Otherwise,
the filename should typically contain the full pathname to the file. Any references to
environment variables or home directories are substituted to generate a complete
path name. All values in the filename must be numeric values for the numeric array
types (integerarray, realarray, fixedpointarray, complexarray), and must be string
values for the string array type. The contents of the file are read and spliced into the
parameter expression and re-parsed. File inputs can be very useful for array
parameters which may require a large amount of data. Other expressions may come
before or after the “< filename” syntax (any white space that appears after the <
character is ignored). Within the file, comment lines containing a leading pound (#)
symbol are ignored by the file parser.
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Parameters With Optimization and Swept Attributes

Many component parameters may have associated attributes that are used during
nominal optimization. Within the Component dialog box, any parameter of type Real,
FixedPoint, Integer, or Enumerated, may also be optimized for design performance. A
complex value may be optimized by optimizing its real and/or imaginary parts.

Parameters of type Complex, Precision, Array, String, or Filename may be optimized
or swept by creating a string that references optimized or swept variables. To
reference an optimized variable, the variable must be defined in a VAR (Variables
and Equations) component with the Standard entry mode and with
Optimization/Statistic Setup enabled.

In a similar manner to optimization attributes, there can also be parameters with
swept attributes.

For more information on optimization in Agilent Ptolemy, refer to Chapter 8, Using
Nominal Optimization in this manual. For more information on sweeping parameters
in Agilent Ptolemy, refer to Chapter 7, Performing Parameter Sweeps in this manual.
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Chapter 5: Using Data Types

This chapter reviews some basic material on Data Types that was introduced in
Chapter 3, Data, Controllers, Sinks, and Components, but then goes into more detail.

Agilent Ptolemy uses different data types such as integer, fixed-point, floating-point,
and complex in scalar or matrix forms. In Agilent Ptolemy documentation there are
numerous references to data and signal types. When data is presented versus an
independent variable such as time, the data can be thought of as a signal. Regardless
of the terminology, data or signals consist of packets of information that are passed
from one component to another.

Representation of Data Types

Agilent Ptolemy schematics contain component stems with different colors and
thicknesses. Each component input and output pin has an associated data type, and
each type is represented in the component symbol by use of a color code and a
thickness of stem. Additionally, each component stem may have single or multiple
arrowheads. Table 5-1 describes stem color and thickness in Signal Processing
schematics.

Table 5-1. Ptolemy Component Stem Color and Thickness

Data Type Stem Color Stem Thickness
Scalar Fixed Point Magenta Thin
Scalar Floating Point Blue Thin
Scalar Integer Orange Thin
Scalar Complex Green Thin
Matrix Fixed Point Magenta Thick
Matrix Floating Point Blue Thick
Matrix Integer Orange Thick
Matrix Complex Green Thick
Timed Black Thin
AnyType Red Thin
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Stem Thickness

Figure 5-1 illustrates stem thickness:

L .
* EE:|+ EE} H E:E]Xgﬂin*
AddTx_M GainCx_M
AZ G1
Goin=1
) %

Add2 Mpy
w1 M1

Figure 5-1. Matrix Data (Thick Lines) vs. Scalar Data (Thin Lines)

Single and Multiple Arrowheads

Agilent Ptolemy uses block diagram schematics to enter information for simulation,
which implies that all signals flowing between components are directional. Therefore,
each input or output stem has arrowheads indicating the signal flow direction. This is
not the case in circuit schematics where signals (wires) are generally bidirectional.

The signal flow is indicated by a single arrowhead. While single arrowhead stems
carry only one distinct signal, double arrowhead stems can carry any number of
independent signals or data. Figure 5-2 shows the difference between single and
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multiple arrowheads. In this figure, the input of the multiplier component is a single
multiple input carrying data from any number of inputs.
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Figure 5-2. Single and Multiple Arrowheads

Data Types Defined

Presently, there are two general signal types used in Agilent Ptolemy, numeric and
timed. The numeric type has several subtypes, such as fixed-point, real, scalar, and
matrix. Numeric signals have sequential numbers as the independent variable.
Timed signals have time as the independent variable and are derived from complex
data. Timed signals have additional attributes.

Typically, numeric data is used for algorithmic development in the baseband portion
of a communication system. Timed signals are used to simulate the signal in the
modulation channel, as well as for cosimulation with certain Advanced Design
System circuit simulators.

Numeric Scalar Data

Numeric scalar data is defined as follows:
* int—single, integer value (signed value defined with a 32-bit value)

¢ fixed—single, fixed-point value with the following properties and operation
attributes:

precision defined using x.y or y/w where
x = bits to the left of the decimal point
y = bits to the right of the decimal point
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w = x+y = total bit width, 1 to 255

arithmetic type
two’s complement (with sign bit included in x)
unsigned

quantization type
truncate, round

overflow type
saturate, saturate to zero, wrapped

¢ float—double precision floating point number

* complex—pair of double precision floating point number for real and imaginary
parts

Numeric Matrix Data

All matrix data is defined as a two-dimensional array (rows, columns) of either int,
fixed, float, or complex values. All matrix data types are indicated by thick stems, in
contrast with the thin stems used for scalar data types.

Timed Data

Agilent Ptolemy supports timed data. This signal is derived from complex data and
includes additional attributes. The timed signal packet includes five members

{i(t), qt), flavor, Fc and t}

where i(t) and q(t) are the timed signal in phase and quadrature components, flavor
indicates the representation of a modulated signal, Fc is the carrier (or
characterization) frequency, and ¢ is the time.

There are two equivalent representations (flavors) of a timed signal:
complex envelope (ComplexEnv) v(2)
real baseband (BaseBand) V(2)

RF signals that are represented in the ComplexEnv flavor v(t) together with Fc can
be converted to the real BaseBand flavor V(#) as:
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Conversion of Data Types

What Happens During Conversion?

We introduced this topic in Chapter 3. In this section, we go into more detail. Most
conversions do what you expect. For example, when converting from lower precision
to higher precision data types, such as integer to float, no data is lost; only the format
is changed.

When converting from higher precision to lower precision data types, such as float to
integer, the outcome is governed by your computer’s math rounding rules.

Whether you manually place a converter, or the simulator “splices” in a converter, the
conversion process is the same. It is similar to the casting operation used in C or C++
languages. If the conversion from A to B requires more information (integer to float,
float to complex, etc.) the “obvious” thing happens. For example, conversion from float
to complex is done by setting the imaginary part of the complex number equal to 0.0.
However if the conversion involves loss of information (complex to double, double to
integer, etc.), a set of rules are followed that are in most cases very simple and
intuitive.

Numeric Scalar and Matrix Conversions

Table 5-2 outlines the rules regarding scalar conversions among numeric data types:

Table 5-2. Numeric Scalar and Matrix Conversion Rules

To
From Integer Fixed Float
Complex round mag round/truncate mag mag
Float round round/truncate
Fixed round

Note that mag in preceding table means the magnitude of the complex number
C = a + jb, which is equal to

Conversion of Data Types 5-5



Using Data Types

«/az2 + b2 .

For automatic conversion (when no converter is explicitly used) to the Fixed data
type, the resulting fixed-point number has the default length of 32 bits and a
precision of the minimum number of integer bits needed for a two’s complement
representation. For example, the integer 5 is converted to the fixed point number
0101.0000000000000000000000000000 (precision “4.28”), whereas the float number
3.375 is converted to 011.01100000000000000000000000000 (precision “3.29”). If this
is not the behavior you want, you must explicitly use a converter.

For matrix conversions, the above operations hold for all entries in the matrix.

Timed Data Conversions

You can convert between timed and scalar numeric data types by placing one of the
following converters and supplying the parameters as needed:

¢ Timed to Complex or Complex to Timed
¢ Timed to Float or Float to Timed

* Timed to Fixed or Fixed to Timed

¢ Timed to Integer or Integer to Timed

Given the Timed data type {i(2), ¢(¢), flavor, Fc and t}, the conversions between input
and output of a converter are summarized below:

Timed To Float

AN Timed To Float [

If x is the input and y is the output for the TimedToFloat converter, then:
y[n] = i(t)cos(21F . t)-q(t)sin(21F t)
when flavor = ComplexEnv
y[n] =i(t)

when flavor = BaseBand
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Float To Timed

Float to Timed

Parameter: TStep

The FloatToTimed converter has one specific parameter, TStep. If x is the input and y
is the output for this converter, then the y(t) packet has the following parts:

i(t) = x[n*TStep]
q(t) =0.0
F.=0.0

flavor = BaseBand

Timed To Complex

Timed To Complex

The Timed To Complex converter has no parameters. If x is the input and y is the

output for this converter, then:
yln] =i(t) + jq(t)
when flavor = ComplexEnv
yln] =i(t) +j 0.0

when flavor = BaseBand

Complex To Timed

Complex To Timed

Parameters: TStep
FCarrier
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The Complex To Timed converter has two specific parameters, TStep and FCarrier. If
x is the input and y is the output for this converter, then the y(t) packet has the
following parts:

i(t) = Real{x[n*TStep] }
q(t) = Imag{x[n*TStep] }
F.= FCarrier

flavor = ComplexEnv

Rules and Exceptions

The converter devices are in general not reciprocal, i.e., putting two converters with
opposite functionality back-to-back does not necessarily recover the original signal.

Based on the three categories of numeric scalar, numeric matrix, and timed data
types discussed above, the following rules should be considered:

¢ The conversion between numeric scalar and numeric matrix types are done by
explicitly placing Pack and UnPack components. No automatic conversion is
performed between these two categories.

* The conversion between numeric scalar and timed data is done by placing the
appropriate converters. Automatic conversion between these two categories is
allowed (see details below).

* There is no direct conversion between numeric matrix and timed data types.

Figure 5-3 summarizes the conversion among data types.

Timed To Numerlc> Numeric Pack o Numeric

Numeric To Timed Scalar < Unpack Matrix

-

Timed

Figure 5-3. Timed Data Must be Converted to Numeric Scalar
Before Being Converted to Matrix

Automatic or Manual Data Type Conversion

If the output of component A and the input of component B is the same (which means
they are represented by the same color), the data is simply copied from A to B. If the
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output of component A and the input of component B is different, a conversion is
necessary.

Although the software will automatically convert dissimilar data types, such as
complex to float, you may want to manually place an appropriate converter (from the
Signal Converters library) in your schematic. This acts as a visual reminder that a
conversion is taking place, and also helps you decode error messages that may arise.
Automatic conversion means that an appropriate converter is “spliced in” behind the
scenes and is not shown on the schematic.

Automatic conversion is allowed among scalar data types and among matrix data
types, but not between scalar and matrix data types.

Allowed and Disallowed Automatic Conversions

Automatic conversion is available among all numeric scalar types. The same is true
for matrix types. Figure 5-4 summarizes the allowed conversions.

@ e
@

Figure 5-4. Automatic Conversion Among

Numeric Scalar and Matrix Types

With one exception (complex to timed), automatic conversion between timed and
numeric scalar types is also supported, as depicted below in Figure 5-5.
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Figure 5-5. Automatic Conversion of Timed and Scalar Numeric Types

Automatic conversion from Complex to Timed is not supported because the
information about the carrier frequency must be supplied by the user. You need to
place a ComplexToTimed converter and enter the appropriate parameters if such a
conversion is needed.

Also note that automatic conversion of Float to Timed, Fixed to Timed, Integer to
Timed, or Complex to Timed is only possible when there is at least one component in
the design defining the T'Step.

When a scalar pin is directly connected to a matrix pin (or vice versa), without a Pack
or Unpack converter, an error message is generated.

In the Numeric Matrix Library, there are four converters, such as Pack_M and
PackCx_M, that are used to “pack” scalar data into matrix data. Similarly, there are
four converters, such as UnPk_M and UnPkCx_M, that “unpack” the data (back to
scalar). There is no automatic conversion between scalar and matrix data (or vice
versa). You must place the converters where needed in your design.
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Chapter 6: Understanding File Formats

Real, complex, and string array data can be used with component parameters of type
real array, complex array, or string array, respectively. Real array data can be used as
input with the ReadFile component. Real, complex, floating matrix, fixed matrix,
complex matrix, and integer matrix can be used as output from the Printer
component.

In the following seven examples of Agilent Ptolemy file formats (from Real Array
Data through Complex Matrix Data), the examples are drawn from the code and
include the “#” symbol, which denotes a comment on that line.

Real Array Data

# Template for Agilent Ptolemy real data
# Each number separated by newlines

[oNeN

Complex Array Data

# Template for Agilent Ptolemy complex data

# Each complex value, (real, imag), separated by newlines
(1.0, 0.0)

(0.0, 0.0)

(0.0, 0.0)

String Array Data

# Template for Agilent Ptolemy string data

# Each string value enclosed on double-quote marks, ", and separated by
newlines

"text 1"

"text 2"

"text 3"

Float Matrix Data

# Template for Agilent Ptolemy real matrix data
# Each matrix data set separately listed with brackets around each row and
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matrix
# Each matrix row separated by newlines
12, -2, 2]

[-2, 225 -2]]

(25, -21, 3.2]
[-3.5,2.4, -13]]
[22 -24, 3.8]
[-25,2,  -26]

Fixed-Point Matrix Data

# Template for Agilent Ptolemy fixed-point matrix data

# Each matrix data set separately listed with brackets around each row and
matrix

# Each matrix row separated by newlines

[[1.2,-2, 2]

[-2, 2.25,-2]]

[[2.5,-2.1, 3.2]

[-3.5, 2.25,-1.25]]

[[2.2,-2.5, 3.5]

[-25, 2, -2.51]]

Integer Matrix Data

# Template for Agilent Ptolemy integer matrix data

# Each matrix data set separately listed with brackets around each row and
matrix

# Each matrix row separated by newlines

1 -2, 2]

[-2,2,-2]]

[[2,-2, 3]

[-3,2,-1]]

[[2,-2, 3]

[-2,2,-2]]

Complex Matrix Data

# Template for Agilent Ptolemy complex matrix data

# Each matrix data set separately listed with brackets around each row and
matrix

# Each matrix row separated by newlines

[[ 11.0+0.0j, 12.0+0.0j, 13.0+0.0j ]

[ 21.0+0.0j, 22.0+0.0j, 23.0+0.0j ]]
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SPW (.ascsig and .sig) File Formats

SPW format data files can be read by the system simulator by specifying them as

input files in a TimeFile component, or as output files from an OutFile component.
The binary format .sig file has the same ASCII header information as the .ascsig file

but the data is stored as a pointer in binary format.

1. The SPW version 3.0 data file format must be used.

2. Comments can only be included on the one line following the

$USER_COMMENT statement.

3. The TimeFile source can read a real double-format or complex double-format

SPW data file. To read an SPW format file, the appropriate .ascsig or .sig

extension must be specified with the filename.

Real Double Data Format Example .ascsig File

$SIGNAL_FILE 9
$USER_COMMENT

$COMMON_INFO
SPW Version = 3.0

Sampling Frequency = 1
Starting Time =0
$DATA_INFO

Number of points = 6

Signal Type = Double
$DATA
1.000000000000000000000
1.000000000000000000000
-1.000000000000000000000
-1.000000000000000000000
1.000000000000000000000
1.000000000000000000000
END

(Note:There is no space between the sign and the number, e.g., -1.0.

Complex double data format example .ascsig file

$SIGNAL_FILE 9
$USER_COMMENT

$COMMON_INFO
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SPW Version = 3.0

Sampling Frequency = 1

Starting Time =0

$DATA_INFO

Number of points = 10

Signal Type = Double

Complex Format = Real_Imag

$DATA
1.000000000000000000000+j1.000000000000000000000
1.000000000000000000000+j1.000000000000000000000
-1.000000000000000000000+j1.000000000000000000000
-1.000000000000000000000+j1.000000000000000000000
1.000000000000000000000+j1.000000000000000000000
1.000000000000000000000+j1.000000000000000000000
-1.000000000000000000000+j1.000000000000000000000
-1.000000000000000000000+j1.000000000000000000000
-1.000000000000000000000+j1.000000000000000000000
-1.000000000000000000000+j1.000000000000000000000
END

(Note: There is no space between the sign and the number, e.g., -1.0.)

Time-Domain Waveform Data (.tim) File, MDIF ASCII Format

The general .tim file format is:
BEGIN TIMEDATA
# T  (SEC V R xx)

% t Vv
<data line>

'<data line>
END

Guidelines for .tim files

An exclamation point (! ) at the beginning of a line makes it a comment line;
characters following ! are ignored by the program.

TIMEDATA data block is required.
¢ The BEGIN statement:
BEGIN TIMEDATA ! Begin time-domain waveform data
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¢ Option line:
# T ([SEC/MSEC/USEC/NSEC/PSEC] VIMV/DATA R Xx )
where

# = delimiter that tells the program you are specifying these parameters
T = time

SEC/MSEC/USEC/NSEC/PSEC= seconds/milliseconds/microseconds/
nanoseconds/picoseconds

VIMV/DATA = volts/millivolts/data

R = reference resistance, default 50.0

xx = user-specified value for reference resistance

(Note that values Rand xx are for documentation purposes and are not used
by the simulator.)

¢ Format line:
% t \%
where

%= delimiter that tells the program you are specifying these parameters
t =time
v = voltage

e TIMEDATA data requirements are:
¢ A value for t=0 is not required.

* The signal is assumed to be time periodic with time period equal to
maximum time minus minimum time.

* The DATA option line value specifies that voltage values are to be
interpreted as discrete voltage levels with no interpolation between
consecutive voltage points, with each voltage level held constant until the
next voltage point.

Figure 6-1 shows two .tim example files that result in a time periodic voltage versus
time with time period 32 psec. Example 1 is interpreted as a piecewise linear voltage
description; example 2 is interpreted as a voltage state description.

Time-Domain Waveform Data (.bintim) File in Binary Format

The general .bintim file format is:
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NUMBER OF DATA XX1
BEGIN TIMEDATA
#T (SECV R XX)
%TV
<binary data block>

For binary (.bintim) the line NUMBER OF DATAis added as the first file line to specify
the number of time-voltage pairs, XX1. The begin, option, and format lines follow the
same rules as for the .tim file. And, there is no END line.

Agilent Standard Data Format (.dat) Files

The .dat file is a signal file form used with the Agilent 89400 and 89600 series of test
instruments (vector modulation generators/analyzers). Refer to the Agilent Standard
Data Format Utilities User’s Guide, Agilent Part No. 5061-8056.
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Example 1 Example 2

BEGIN TIMEDATA
#T (USEC V R50.)

BEGIN TIMEDATA
#T (USEC DATAR 50.)

% t v %tv
0.0 -1.0 0.0 -1.0
2.0 1.0 2.0 1.0
4.0 2.0 4.0 2.0
8.0 3.0 8.0 3.0
10.0 3.0 10.0 3.0
14.0 0.0 14.0 0.0
18.0-1.0 18.0-1.0
24.0-2.0 24.0-2.0
28.0 0.0 28.0 0.0
32.0-1.0 32.0-1.0
END END
Example 1

NFRPOFRNW

NFRFOFRNW

| |
T T
24 8 14

$ 18 24 28 32
| | | | | | | | | | | | |

Example 2

Figure 6-1. Example .tim Files
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Chapter 7: Performing Parameter Sweeps

This chapter discusses performing parameter sweeps with Agilent Ptolemy. This
capability works in a similar manner to Advance Design System’s Analog/RF
Systems simulators. In this chapter, we will describe this capability using signal
processing examples and point out some things to be aware of when performing
sweeps with Agilent Ptolemy.

Introduction

Parameter sweeps are a quick way to conduct a series of simulations while varying a
parameter and displaying the output on one plot.

For example, you could analyze a bit error rate (BER) measurement while sweeping
the amount of noise added to the design.

Note In many of Advanced Design System’s circuit simulators, sweeps of individual
parameters (such as frequency) can be performed from within many of the simulator
dialog boxes themselves. However, in signal processing, a Parameter Sweep
component must be used.

Sweeping Parameters Using the ParamSweep
Component

To sweep parameters, you need to place and specify parameters for the ParamSweep
component. Alternately, you can place a VAR component (variables and equations) to
aid in defining terms.

Both ParamSweep and VAR components are found in the Controllers component
library. To learn how to use parameter sweeps, we will build a simple design, as
shown in Figure 7-1.
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Figure 7-1. Sweeping a Gain Component

In this design, we have placed a Waveform source, a Gain component, and a Numeric
Sink (from the Common Components library). Default values are used for each. We
have also placed the required Data Flow controller and a ParamSweep component.
The parameter we will sweep is the gain of component G1.

Procedure

1. Double-click the ParamSweep component to display the Component Parameters

dialog box, as shown next.
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ParamSweep Instance Name

I Syeepl |

Sweep 1 Simulations |  Display
Parameter to sweep | G1.Gairf

— Parameter sweep

Sweep Type Linear "'l

@ StartfStop ) CenterfSpan

Start L None ¢

Stop |§7 None /|

Step-size |27 None /|
Emm—

Hum. of pts.

I Use sweep plan |} X

oK | Apply | Cancel| Help |

2. With the Sweep tab displayed (default), in the Parameter to sweep field (near
top), enter G1.Gain. G1 is the instance name of the Gain component. A period
separates this name from the parameter we want to sweep (Gain). With this
syntax, you can set up any parameter of any component for sweeping.
Additionally, this syntax is hierarchical. If the parameter Gain was in a
subnetwork called A, you would use A.G1.Gain.

3. Leave the Sweep Type field set to Linear. Other choices are single point and log.
4. With the Start/Stop option button selected, enter the following parameters:
Start = 1
Stop =5
Step-size = 2
Num. of pts. = 3 (this field is calculated by the program)
5. Now switch to the Simulations tab.

6. In the Simulations to perform field, enter DF1 next to Simulation 1. If this field
is left blank, the simulation will not be successful. Here you are telling the
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program to use the Data Flow controller specified by the instance name DF1 as
the simulator. In rare occasions, you may have multiple Data Flow controllers,
each with its own instance name.

7. Click OK to accept your changes and dismiss the dialog box.
8. Double-click the Data Flow controller component to edit its parameters.
9. Change the Stop parameter to 10.0.

10. Choose Simulate > Simulate .

11. When the simulation is finished, choose Window > New Data Display .

12. Place a rectangular plot, add N1 from your dataset, and choose OK. Your result
should indicate the waveform multiplied by three different Gain values and
look similar to the one shown in the next figure.

G1.Goin=5.000

LM

G1.Goin=3.000

G1.Goin=1.000

doc_sweep.

Sweeping Parameters Using the VAR Component

An alternate way to conduct parameter sweeps is to place a VAR component. A VAR
component is used to define variables and equations, and you place one in addition to
the ParamSweep component.

The following procedure uses the same design as before, but this time we will place
VAR component to help perform the parameter sweep.
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Procedure

1. Place a VAR component from the Controllers library anywhere in the

schematic.

>

i

WoweForm

Wi

Wolug="1 -1"
Conirol&imulolion=N0
Pericdic="ES
Ferind=0

]

LF

CF1

Cefoul {Nurmer TeEiari=0 O

Gefoul {NumericElop=100.0
CefouliTIimeiiari=0.0 vaas
CefouliTimeSioe=100.0 uacg
Cefoul {Saed=1234567
ErhedulerType=Clusierloap
DeadlpckMonoger=FeporiDeadl ook

Galn

B1
Goln=i'?

AR
AR
WrE=1.0

- VAR Component

Pl

Nymer ic

Humar lesink

'R

Flol=Feclangulor
ConirolSimulolion="ES
Siarl=Darfaul lMurericSiori
Siop=Cefoul iNumer icSiop

PARAMETER SWEEP

23

Faramiwesp
Sweand

SwzepP lan=
Sweaphar="1va"
Simlnslancelane|
Sl nalaneelane|
Simlnsigngelame|
Blml maloncelane|
SimlnsignceNane|
Simlreloncelome|
Stotusleve =2
Stori=i

Stap=10

Step-1

Center=

“OE

RN bl by =
PPt Vi ot Pl Y

2. Edit the Gain component so that Gain=XYZ (instead of the default of Gain=1.0).
3. Edit the VAR component so that XYZ=1.0.

4. Edit the ParamSweep component so that SweepVar="XYZ" and
SiminstanceName[1]=“DF” . Leave the rest of the ParamSweep parameters

unchanged.

In this method, you are connecting the Gain parameters with the sweep variable
XYZ. Any reference to XYZ in this design would be swept. Further, you may want to
use VAR components to define other relationships in a design and add another line to
define the parameter to be swept. The use of VAR components allows you a flexible
way of building complicated sweep relationships. However, for a simple parameter
sweep, it is easiest to use only the ParamSweep component.
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Using a Sweep Plan
It is possible to combine sweeps of several parameters or several ranges of one

parameter into a single sweep plan. This plan of multiple parameter sweeps is
controlled by placing a Sweep Plan in your schematic.

Procedure

1. Place a Sweep Plan component from the Controllers library anywhere in the
schematic.
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2. Edit the Parameter Sweep component so that the Use sweep plan check box is

selected, as shown below. The Sweep tab must be selected before you can check
this box.
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ParamSweep Instance Name
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Use sweep plan
check box

3. Double-click the Sweep Plan component to edit its parameters.

4. Enter two ranges of gain steps. First, in the Start/Stop field repeat the range
that was entered for the single parameter sweep:

Start = 1
Stop =5
Step-size = 2

5. Choose Apply .
6. Next, change the Start/Stop field to:

Start = 10
Stop = 14
Step-size = 2

7. Choose the Add button (left side). This adds our new range to the sweep plan, as
shown below.
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— Sweep Plan

SweepHan Instance Name

[ p1an |
Sweep Type Linear _"l
Parameter
Start=10 Stop=14 Step=2 - Start/Stop ) CenterfSpan
Start=1.0 Stop=5.0 Step= :
Start 1 None _fl
Stop 14 None _"l
Step-size 2.0 None _"l
Hum. of pts. |3

E
Add | aut | paste

' _1 Next Sweep Plan

oK
8. Click OK.

It is possible to place multiple Sweep Plan components that control simulation in a
chain of events. To do this, you place additional Sweep Plan components and choose
the Next Sweep Plan check box (in the lower-center of the Sweep Plan dialog box).

9. Choose Simulate > Simulate .

When the simulation is finished, your
following:

Apply

Data Display window should look similar to the
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The Gain parameter has now been swept over two ranges.

Note The placement of sweep components within a design does not affect the order
in which parameters are swept. Similarly, the order in which the sweeps are
automatically numbered does not determine the order in which they are executed.
The order of execution is determined by the order in which one sweep calls another,
as determined by the value of the SweepPlan. The simulation component calls the
first sweep plan to be conducted, whatever it is named.

Sweeping Various Parameter Types

If you want to sweep a Real, Integer, or Fixed Point parameter type, the procedure is
similar to the example just presented. However, if you want to sweep

¢ Complex

® Precision

* Array

* String

¢ or Filename

parameter types, you have to perform additional steps.
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To sweep these parameter types, you must use a VAR (Variables and equations)
component to define the swept variable. You then embed a variable from the VAR in
the string of the component parameter value. The reason for this procedure is the
simulator only sweeps numbers and these parameter types are strings that are
interpreted by the simulator.

An example of sweeping a filename is the case of ten files, myfilel.dat through
myfile10.dat each containing filter coefficients. You might want to sweep a range of
these files.

Note Earlier versions of Advanced Design System (1.0 and 1.1) required the use of
sprintf and strcat functions to reference strings. While no longer needed for complex,
precision, or array types, designs built with these functions will still work.

Sweeping a Complex Waveform Component

This example, shown in Figure 7-2, shows how to sweep a parameter type that is
represented by a string.

ﬁ\\
@& — Pl Trigf—pe= =50
/ Humeric

W1

WaveFormCx TrigGx Mumer icSink
T1 M1
Value="{1+]TX3(24+]F4)" Type=3in Pleot=FRectangular
CantrolSimulation=ND Cantrol3imulation=YES
Periadic=YES Start=Defaul tHNumericStart
Periad=0 :i:] Stop=DefaultNumericStep
Gain=1.0

| oF I 6%/ PARAMETER SWEEP

ForamSweep
OF
oF SGweep

Defaul tNumericStar t=0 g?;ﬂ:?;;cgmrﬁe[
Dafaul tHumericStop=100

Dafaul tTimaStart=0 uaas
Dafaul tTimaStop=100 usac

1]
SimlinstanceName[2]
SimlnstanceName [ 3]
simlinatanceNamne[4]
SiminatanceMoma[ 5]
SimlinatanceMoma &)
Start=1

Step=10

Step=1

Figure 7-2. Sweeping a Complex Waveform Component’s Value
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The basic parameter sweep set up is similar to our earlier example. Here we use a
VAR (Variables and equations—symbol Var Eqn) component (from the Controllers
library or palette) to define the swept variable called X. Let’s zoom in on the
WaveformCx component, which produces a complex waveform.

10>

WaveFormCx

W1
Values"{1+jFEd(24]*4 "
Caontrol3imulation=hD
Periadic=YEZ

Feriad=0

The parameter we want to sweep is the imaginary part of the first complex entry in
an array of two complex numbers. Since complex arrays are handled as strings in
Agilent Ptolemy, we sweep the imaginary part as follows:

Value=“(1+j*X)(2+j*4)”

The string “(1+j*X)(2+j%4)” tells the software to evaluate the mathematical
expression for variable X and convert it to a string.

Now if we sweep the variable X from 0 to 3, we obtain the following result for the
magnitude of the output:
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Performing Multidimensional Sweeps

Sometimes you need to sweep two or more variables and observe the composite
results. An example is analyzing the bit error rate (BER) of a communication system
for two modulation schemes at three different power levels. Here, for each of two
modulation formats X, there are three power levels Y. You set up this type of
simulation using two Parameter Sweep components.

An example of another multidimensional sweep design is shown Figure 7-3:
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Figure 7-3. Multidimensional Sweep Example Using a DownSample Component

In this example, a RampFloat is used as a source for a DownSample component, with
the results stored in a Numeric Sink. The parameters Factor=X and Phase=Y of the
DownSample component are swept simultaneously. X is swept from 10 to 20 in steps
of 2. Y is swept from 0 to 5 in steps of 5. There are a total of 6*2 traces in the resulting
Data Display window, shown Figure 7-4:
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Figure 7-4. Simulation Results of Multidimensional Sweep Example

Each line is associated with a downsampling factor (X) for a given phase (Y).
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Chapter 8: Using Nominal Optimization

This chapter describes using Nominal Optimization with Agilent Ptolemy. Nominal
optimization, also called performance optimization, employs iterative simulation to
achieve user-specified goals by automatically varying specific simulation design
parameter values over user-specified ranges. For example, you could optimize the
gain of a carrier recovery loop to achieve a desired lock time and residual loop error or
you could optimize a fixed-point bit-width parameter in a DSP design

This capability generally works the same way as in Advance Design System’s
Analog/RF Systems simulators. The Nominal Optimization procedure is found in the
manual Tuning, Optimization, and Statistical Design. Refer to Performing Nominal
Optimization that manual for compete details.

In this chapter we will present a DSP example on optimizing bit-width and describe
some additional information on signal processing parameter types to be aware of
when performing optimization with Agilent Ptolemy.

Optimizing Various Parameter Types

If you want to optimize a Real, Integer, or Fixed Point parameter type, the procedure
is similar to standard nominal optimization. However, if you want to optimize

¢ Complex
® Precision
¢ Array
¢ String
¢ or Filename
parameter types, you have to perform additional steps.

To optimize these parameter types, you must use a VAR component to define the
optimizable variable. You then embed a variable from the VAR in the string of the
component parameter value. The reason for this procedure is the simulator only
sweeps numbers and these parameter types are strings that are interpreted by the
simulator.

To reference an optimized variable for parameter types that use strings, the variable
is defined in a VAR (Variables and equations—symbol Var Eqn) component with the
Standard entry mode and Optimization/Statistic Setup enabled. Once defined, this
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variable may be used as a component parameter, as shown in Example 2, below. If
you type this variable on the schematic, it must be enclosed in quotes (“ ”). If you
enter it in the Component dialog box, quotes are automatically added.

An example of optimizing a filename is the case of ten files, myfilel.dat through
myfile10.dat, each containing filter coefficients. You might want to conduct an
optimization based on a range of these files.

Note Earlier versions of Advanced Design System (1.0 and 1.1) required the use of
sprintf and strcat functions to reference strings. While no longer needed for complex,
precision, or array types, designs built with these functions will still work.

Optimizing Input and Output Bit Width

This example shows how to set up a simple fixed-point bit-width parameter
optimization. To learn how to do this optimization, we will build a simple design, as
shown in Figure 8-1. You can copy it from the examples / Tutorial directory. The
project file is dspopt_prj and the design is simpleopt2. Or, you can quickly build this
example or just follow along from this manual.
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Figure 8-1. Optimizing Input and Output Precision of a Gainfix Component

The value of the input and output precision of Gainfix in component G1 is optimized
to achieve a “dc” data value of 0.2 in the sample stored in the numeric sink. The goal
is to represent the gain with the minimum number of bits possible.

The design consists of the following:

¢ A Fixed Constant Output (ConstFix) source component (from the Numeric
Sources library), with the Level parameter set to 1.0.

¢ An Integer Constant Output (ConstInt) source component (from the Numeric
Sources library), with the Level parameter set to D, as explained in the section
“Setting Up the ConstInt, Second Sink, and Second Goal Components” on
page 8-5.

¢ A GainSyn component, with Gain=0.2 and GainPrecision="W.D"
* A Numeric Sink, with default values accepted.

* A second Numeric Sink, with default values accepted.
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¢ A Data Flow controller, with default values accepted, except set Default Stop to
0.

¢ A VAR component, set up as described in the next section.

¢ An Optim component, set up as described in the section Setting Optimization
Job Parameters in the Tuning, Optimization, and Statistical Design manual.
Use the default values, except set MaxIters = 30, and P = 2. The default
optimizer type is the Random optimizer.

¢ A Goal component, for the expression N1.

* A second Goal component, for the expression N2, set up as described in the
section “Setting Up the ConstInt, Second Sink, and Second Goal Components”
on page 8-5.

The value of 0.2 cannot be exactly represented with only one or two fractional bits
(bits to the right of the decimal point). Without optimization, too many bits (such as
16) might be used. While the number 0.2 would be represented very accurately, the
extra bits could be wasteful in the final implementation.

By studying this simple example, you can learn the procedure you would use to solve
real-world design problems, such as optimizing the bit width of an FIR filter.

Setting Up the VAR Component

Let’s zoom in on the VAR component:

Var | VAR
Eanl v apo
=2

D=1 apt} discrete 1 to 16 by 1 }
Figure 8-2. VAR Component Parameters

Double-click the VAR component in your schematic to display its dialog box. The
following is a description of each parameter we have to set so that the VAR
component matches Figure 8-2:

Note The labels, such as W or D, are user-defined variable names and could be
anything you wanted.
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1. Enter W= 2. W is the number of bits to the left of the decimal point, including
the sign bit.

2. Enter D=1. D is the number of bits to the right of the decimal point. 1 is our
nominal value before optimization. This should be your best estimate for the
nominal value.

. After you enter D=1, choose the Optimization/Statistics Setup  button.
. From the Optimization Status drop-down list, select Enabled .

. From the Type drop-down list, select Discrete .

. In the Minimum Value field, enter 1.

. In the Maximum Value field, enter 16.

. In the Step Value field, enter 1.

o 3 O Ot B~ W

These last four steps tell the program to optimize using only the discrete values of
1 through 16 in steps of 1.

9. Click OK to return to the main Variables and Equations dialog box.
10. When done, click OK.

Setting Up the ConstInt, Second Sink, and Second Goal
Components

Optimizing bit width requires placing a second source, ConstInt; a second Numeric
Sink; and a second Goal component. Wire the second ConstInt to the second Numeric
Sink. The purpose of these secondary components is to create a second optimization
goal, which the program will attempt while meeting the criteria of the first
optimization goal. Do the following:

1. Edit the ConstInt Component to set Level=D. D is the number of bits to the right
of the decimal point, that you defined in the VAR component.

2. Accept the defaults for the second Numeric Sink, N2.
3. Edit the parameters for the second Goal component, OptimGoal2, as follows:

Expr = “N2”
SimInstanceName = “DF1”
Min=0

Max =0
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Weight =1
RangeVar = Index
RangeMin =0
RangeMax = 0

Weight Parameter

Keep in mind that the Weight parameter weighs the importance of one goal to the
other goal(s). Generally, the first goal may be more important, such as when it meets
a performance specification, such as frequency response. The second goal (in this
example, bit width) is weighted less. Because the error function of the first goal is
small compared to the second goal, the Weight of the first goal is set to 1 e9.

Completing the Optimization
You are now ready to complete the optimization.

The remainder of the procedure for completing and running the optimization for
parameter types such as precision or string, as described in this section, are the same
as for any optimization. To review these procedures, refer to Specifying Component
Parameters for Optimization in the Tuning, Optimization, and Statistical Design
manual for details.
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Chapter 9: Theory of Operation

Introduction

Agilent Ptolemy provides signal processing simulation for Advanced Design System’s
specialized design environments. Each of these specialized design environments
capture a model of computation, called a domain, that has been optimized to simulate
a subset of the communication signal path. Advanced Design System domains that
are part of Agilent Ptolemy, or can cosimulate with Agilent Ptolemy are:

Simulation
Domain Technology Controller Application Area
Synchronous Numeric dataflow Data Flow Synchronous multirate signal
Dataflow (SDF) processing simulation
Timed Synchronous | Timed dataflow Data Flow Baseband and RF functional
Dataflow (TSDF) simulation (e.g., antenna and
propagation models, timed
sources)
Circuit Envelope Time- and Envelope Complex RF simulation
frequency-domain
analog
Transient Time-domain analog Transient Baseband analog simulation

In Agilent Ptolemy, a complex system is specified as a hierarchical composition
(nested tree structure) of simpler circuits. Each subnetwork is modeled by a domain.
A subnetwork can internally use a different domain than that of its parent. In mixing
domains, the key is to ensure that at the interface, the child subnetwork obeys the
semantics of the parent domain.

Thus, the key concept in Agilent Ptolemy is to mix models of computation,
implementation languages, and design styles, rather than trying to develop one,
all-encompassing technique. The rationale is that specialized design techniques are
more useful to the system-level designer, and more amenable to a high-quality,
high-level synthesis of hardware and software. In the next sections we will describe
the SDF and TSDF. For general documentation on the Circuit Envelope and
Transient simulators refer to the Circuit Envelope and RF Transient/Convolution
Simulation chapters in the Circuit Simulation manual. For information on
cosimulation with Agilent Ptolemy and these circuit simulators, refer to Chapter 11,
Cosimulation with Analog/RF Systems.
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Synchronous Dataflow (SDF)

SDF is a special case of the dataflow model of computation, which was developed by
Dennisl. The specialization of the model of computation is to those dataflow graphs
where the flow of control is completely predictable at compile time. It is a good match
for synchronous signal processing systems, those with sample rates that are rational
multiples of one another.

The SDF domain is suitable for fixed and adaptive digital filtering, in the time or
frequency domains. It naturally supports multirate applications, and its rich
component library includes polyphase FIR filters.

Advanced Design System’s Examples directories contain numerous application
examples which rely on SDF semantics. To view these examples, chose File >
Example Project, a dialog box appears. Select the DSP/dsp_demos_prj directory for
one group of SDF examples.

Synchronous dataflow (SDF) is a data-driven, statically scheduled domain in Agilent

Ptolemy. It is a direct implementation of the techniques given by Lee 2:3. Data-driven
means that the availability of data at the inputs of a component enables it.
Components without any inputs are always enabled. Statically scheduled means that
the firing order of the components is periodic and determined once, during the
start-up phase. It is a simulation domain, but the model of computation is the same
as that used for bit-true simulation of synthesizable hardware used by the DSP
Synthesis tool. A number of different schedulers have been developed for this model
of computation.

Basic Dataflow Terminology

The SDF dataflow model is equivalent to the computation graph model of Karp and

Miller 4. In the terminology of the dataflow literature, components are called actors.
An invocation of a component is called a firing. The signal carried along the arc
connecting the blocks are made of individual packets of data called ftokens. In a digital
signal processing system, a sequence of tokens might represent a sequence of
samples of a speech signal or a sequence of frames in a video sequence.

Note Some Agilent Ptolemy terminology is different from UCB Ptolemy terminology.
For example, a component in Advanced Design System is called a star in UCB
Ptolemy and an arc is a wire. Refer to the Glossary for more information.
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When an actor fires, it consumes some number of tokens from its input arcs, and
produces some number of output tokens. In synchronous dataflow, these numbers
remain constant throughout the execution of the system. It is for this reason that this
model of computation is suitable for synchronous signal processing systems, but not
for asynchronous systems. The fact that the firing pattern is determined statically is
both a strength and a weakness of this domain. It means that long runs can be very
efficient, a fact that is heavily exploited in Agilent Ptolemy and the Agilent DSP
Synthesis tool. But it also means that data-dependent flow of control is not allowed.
This would require dynamically changing firing patterns.

Balancing Production and Consumption of Tokens

Each port of each SDF component has an attribute that specifies the number of
tokens consumed (for inputs) or the number of tokens produced (for outputs). When
you connect an output to an input with an arc, the number of tokens produced on the
arc by the source component may not be the same as the number of tokens consumed
from that arc by the destination component. To maintain a balanced system, the
scheduler must fire the source and destination components with different frequency.

NAl NCl
A >1 c
B N
NA2 N c2
NB B2

Figure 9-1. Simple Connection of SDF Components Illustrates Balance Equations
Constructing a Schedule

Consider a simple connection between three components, as shown in Figure 9-1. The
symbols adjacent to the ports, such as N, represent the number of tokens consumed
or produced by that port when the component fires. For many signal processing
components, these numbers are simply one, indicating that only a single token is
consumed or produced when the component fires. But there are three basic
circumstances in which these numbers differ from one:

® Vector processing in the SDF domain can be accomplished by consuming and
producing multiple tokens on a single firing. For example, a component that

computes a fast Fourier transform (FFT) will typically consume and produce 2"
samples when it fires, where M is some integer. Examples of vector processing
components that work this way are FFT_Cx, Average, and FIR. This behavior is
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quite different from the matrix components, which operate on tokens where
each individual token represents a matrix.

¢ In multirate signal processing systems, a component may consume M samples
and produce N, thus achieving a sampling rate conversion of N/ M. For
example, the FIR component can optionally perform such a sampling rate
conversion, and with an appropriate choice of filter coefficients, can interpolate
between samples. Other components that perform sample rate conversion
include UpSample, DownSample, and Chop.

e Multiple signals can be merged using components such as Commutator or a
single signal can be split into subsignals at a lower sample rate using the
Distributor component.

To be able to handle these circumstances, the scheduler first associates a simple
balance equation with each connection in the graph. For the graph in Figure 9-1, the
balance equations are

TaN 1 = 1¢Ney
ralNap = rpNp,
rgNp, = r¢Ne,

This is a set of three simultaneous equations in three unknowns. The unknowns, r,,
rg, and r are the repetitions of each actor that are required to maintain balance on
each arc. The first task of the scheduler is to find the smallest non-zero integer

solution for these repetitions. It is proven in Lee! that such a solution exists and is
unique for every SDF graph that is “consistent,” as defined below.

How Schedulers Work in Agilent Ptolemy

Synchronous Dataflow (SDF) is a restricted version of dataflow in which the number
of data produced or consumed by a component per invocation is known at compile
time. As the name implies, SDF can be used to model synchronous signal processing
algorithms. In these algorithms, all of the sampling rates are rationally related to one
another.

An SDF scheduler takes a simulation design and determines the sequence or order of
invocation of each component. The simulator will simulate the design according to
the schedule generated by the scheduler. Agilent Ptolemy provides three
user-selectable schedulers for any given simulation:
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¢ (Classical Scheduler
¢ Cluster Loop Scheduler
¢ Acyclic Loop Scheduler

The trade-offs between them are typically the time needed to generate the schedule,
the memory usage of storing the schedule data structure, and the memory usage of
buffers for data collection.

Classical Scheduler

This is the classic scheduler from UC Berkeley Ptolemy, which tries to minimize the
buffer sizes. It tries to put off the firing of any block as long as possible. A component
firing is deferred until none of the components that feeds data to it can be fired. It
usually takes longer to generate the schedule than other schedulers, and has a large
schedule size, but it uses less memory buffers across components. This scheduler is
good for uni-rate designs.

Cluster Loop Scheduler

This scheduler generates single-appearance schedules that take less time than the
Classical scheduler. The advantage of a single-appearance schedule is that it
significantly reduces schedule size. Each component appears once in the schedule and
possibly with a loop factor. However, the buffer memory usage will be increased by
the loop factor. Most of the increased buffer memory usage can be reduced by
clustering components and limiting the buffer increases to only between clusters.
This scheduler is good for multirate designs such as wireless 2.5/3G designs.

Acyclic Loop Scheduler

This scheduler generates single-appearance looped schedules for acyclic graphs to
optimizing both the schedule and buffer sizes by using a “recursive partitioning by
minimum cuts” heuristic. More information about the algorithms and heuristics can
be found in chapters 6 and 7 of Software Synthesis from Dataflow Graphs
(http://ptolemy.eecs.berkeley.edu/~murthy/book.html) by Shuvra S. Bhattacharyya,
Praveen K. Murthy, and Edward A. Lee, published by Kluwer Academic Publishers,
Norwood, MA, 1996. This scheduler is good for multirate designs without cycles.
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Iterations in SDF

At each SDF iteration, each component is fired the minimum number of times to
satisfy the balance equations.

Suppose for example that component B in Figure 9-1 is an FFT_Cx component with
its parameters set so that it will consume 128 samples and produce 128 samples.
Suppose further, that component A produces exactly one sample on each output, and
component C consumes one sample from each input. In summary,

Va1 = Npp = Nep = Nep =1
Ny, = Np, = 128.

The balance equations become

ra =T¢
ry = 128rp
1285 = re.

The smallest integer solution is
ry =rc =128

rg = 1.

Hence, each iteration of the system includes one firing of the FFT_Cx component and
128 firings each of components A and B.

Inconsistency

It is not always possible to solve the balance equations. Suppose that in Figure 9-1 we
have

Va1 =Ny, =Ngy = Ngp =Npg, =1
Ng, = 2.

In this case, the balance equations have no non-zero solution. The problem with this
system is that there is no sequence of firings that can be repeated indefinitely with

bounded memory. If we fire A,B,C in sequence, a single token will be left over on the
arc between B and C. If we repeat this sequence, two tokens will be left over. Such a
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system is said to be inconsistent, and is flagged as an error. The SDF scheduler will
refuse to run it.

Deadlocks

1 1
A > B

By

1
Figure 9-2. A Deadlocked SDF System

While scheduling a system, it is possible that we are not able to complete all of the
firings specified in the repetition vector because none of the remaining components
are enabled. Such a system is said to be a deadlock state. Figure 9-2 shows a system
in such a state. The repetitions vector for this system is:

ry =1
rg = 1.

Thus this system is consistent; however, neither A nor B are enabled because each is
waiting for one token from the other. The way to resolve this deadlock is to introduce
an initial token on one of the two arcs in the figure. This initial token is known as a
delay.

The Delay component is indicated by a component with a diamond that is connected
to an arc. The delay has a single parameter, the number of samples of delay to be
introduced. In the SDF domain, a delay with parameter equal to one is simply an
initial token on an arc. This initial token may enable a component, assuming that the
destination component for the delay arc requires one token in order to fire. To avoid
deadlock, all feedback loops must have delays. The SDF scheduler will flag an error if
it finds a loop with no delays. For most token types, the initial value of a delay will be
Z€ro.

By default, a delay has a zero value. To specify a specific value for the initial token,
use the InitDelay token.

There are a number of specialized components in Agilent Ptolemy that add a delay on
an arc, such as DelayRF, VeDelayRF, ShiftRegPPSyn, ShiftRegPSSyn,
ShiftRegSPSyn, and CounterSyn. Delay_M is used for matrices.

Synchronous Dataflow (SDF) 9-7



Theory of Operation

Deadlock Resolution

In Agilent Ptolemy, there is a optional deadlock resolution algorithm that can
determine where Delay components need to be inserted. If the user desires, the delay
components can be automatically spliced in.

For the Data Flow controller, an option item called Deadlock Management is listed.
There are three options:

* Report deadlock. The Agilent Ptolemy simulator will simply report deadlocks
if the schedule has failed because of a deadlock.

¢ Identify deadlocked loops. A new algorithm is turned on to locate where the
problem occurs. By using this algorithm, Agilent Ptolemy highlights each loop
that has deadlocked.

¢ Resolve deadlock by inserting tokens. Agilent Ptolemy will resolve the
deadlock automatically by inserting delays. This option must be used with care.
In general, there are many places Agilent Ptolemy can insert a delay to break a
deadlock. Each of these cases can lead to different simulation results.

Timed Synchronous Dataflow (TSDF)

TSDF is an extension of SDF described in the previous section. TSDF adds a Timed
data type, which is described in Chapter 5, Using Data Types. For each token of the
Timed type, both a time step and a carrier frequency must be resolved.

Advanced Design System’s Examples directories contain numerous application
examples that rely on TSDF semantics. To view these examples, chose File > Example
Project, a dialog box appears. Select the DSP / ModemTimed_prj directory for one
group of TSDF examples.

Time Step Resolution

In TSDF, each Timed arc has an associated time step. This time step specifies the
time between each sample. Thus the sampling frequency for the envelope of a Timed
arc is 1/time step.

The sampling frequency is propagated over the entire graph, including both Timed
and numeric arcs. To calculate a time step, the SDF input and output numbers of
tokens consumed/produced are used.
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For any given SDF or TSDF component, the sampling frequency of the component is
defined as the sampling frequency on any input (or output) divided by the
consumption (or production) SDF parameter on that port. After a sampling frequency
is derived for a given component, it is propagated to every port by multiplying the
component’s rate with the SDF parameter of the port. A sample rate inconsistency
error message is returned if inconsistent sample rates are derived.

Carrier Frequency Resolution

Each Timed arc in a timed dataflow system has an associated carrier frequency (F,).
These F values are used when a conversion occurs between Timed and other data
types, as well as by the Timed components.

The F_ has either a numerical value, which is greater than or equal to zero (F, = 0.0),
or is undefined (F, = UNDEFINED). All Timed ports have an associated F, = 0.0.
Non-timed ports have an UNDEFINED F..

During the simulation, all the F, values associated with all of Timed ports are
resolved by the simulator. The resolution algorithm begins by propagating the F,

specified by the user in the Timed sources parameter Fcarrier until all ports have
their associated F,. At times, the user may have specified incompatible carrier

frequencies, and Agilent Ptolemy will return an error message.

In the feedforward designs, the algorithm will converge quickly to a unique solution.
In the designs with feedback, the algorithm takes additional steps to resolve the
carrier frequency at all pins.

For feedback paths, a default F, is assigned by the simulator. This default F is then

propagated until the F, converges on the feedback path. This F, is occasionally
non-unique. To specify a unique value, use the SetFc¢ Timed component.

Input/Output Resistance

Resistors can be used with timed components. Resistors provide a means to support
analog/RF component signal processing. They provide definition of analog/RF input
and output resistance, additive resistive Gaussian thermal (Johnson) noise, and
power-level definition for time-domain signals.
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Theory of Operation

Though resistors are circuit components, they are used in the data flow graph by
defining their inputs from the outputs of connected TSDF components and their
outputs at connected TSDF component inputs.

T1 R1 T2

D—» o —»D

R2

Figure 9-3. TSDF Components with Interconnected Output (R1)
and Input (R2) Resistors

The above figure shows two TSDF components, T1 and T2, with an interconnected
series resistor, R1, at the output of T1 and a shunt resistor, R2, at the input of T2.

Such interconnected resistors are collected and replaced with the appropriate signal
transformation model that includes time-domain signal scaling and additive thermal
noise.

Resistors contribute additive thermal noise (kTB) to signals when the specified

resistance temperature (RTemp) is greater than absolute zero (-273.16 degrees
Celsius) where:

k = Boltzmann’s constant
T = temperature in Kelvin
B = simulation frequency bandwidth

1/2 / T'Step: if signal is a timed baseband signal

1/ TStep: if signal is a timed complex envelope signal
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Chapter 10: Introduction to MATLAB
Cosimulation

The MATLAB models provide an interface between Agilent Ptolemy and MATLAB, a
numeric computation and visualization environment from The MathWorks, Inc. Each
MATLAB model can contain a MATLAB function, command, statement, or several
statements. Agilent Ptolemy handles the conversion of data to and from MATLAB.

Setting Up MATLAB

Agilent Ptolemy requires version 5 of MATLAB on all platforms.

Under all platforms, set the MATLAB configuration variable in hpads.cfg to the root
of your MATLAB installation. For example, you might set it to

MATLAB=/usr/local/matlab
on a UNIX platform, or
MATLAB=c:/matlab

on a Windows platform. (See the Advanced Design System Installation Guide for
more details on the hpads.cfg file.)

Under UNIX, if the command to invoke MATLAB is not matlab , set the
MATLABCMD configuration variable to the correct command. For example, you
might set it to

MATLABCMD="matlab -c /path/to/license/file”

so that matlab correctly finds its license file. Most people won’t need to set the
MATLABCMD variable. The variable’s setting is ignored under Windows.

Finally, under Windows, you will need to install MATLAB ActiveX in the Windows
registry. To install the entries, run:

matlab /Regserver

from the command line. MATLAB will register itself and remain running and
minimized. At that point, you should exit MATLAB. You need only do this once. For
more details, refer to “ActiveX Automation for Windows” in the “Using the MATLAB
Engine” chapter of the MATLAB Application Program Interface Guide.
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Introduction to MATLAB Cosimulation

If a MATLAB model is run and MATLAB has not been set up correctly, then Agilent
Ptolemy will report an error. All MATLAB models in a simulation send their
commands to the same MATLAB process.

Simulating with MATLAB

MATLAB distinguishes between real matrices and floating-point matrices. Agilent
Ptolemy distinguishes between models that produce data and models that don’t. As a
consequence, there are three MATLAB models in Agilent Ptolemy, one producing
floating-point matrices, one producing complex-valued matrices, and one, a sink,
producing nothing. All the models can accept any number of inputs provided that the
inputs have the same data type, floating point or complex.

The models are:

Model Description

Matlab_M Evaluates a MATLAB expression and outputs the result
as floating-point matrices.

MatlabCx_M Evaluates a MATLAB expression and outputs the result
as complex-valued matrices.

MatlabSink Evaluates a MATLAB expression a fixed number of times.

The models all use a common MATLAB engine interface that is managed by a base
MATLAB model. The base model does not have any inputs or outputs. It provides
methods for starting and killing a MATLAB process, evaluating MATLAB
commands, managing MATLAB figures, changing directories in MATLAB, and
passing Agilent Ptolemy matrices into and out of MATLAB. Currently, the base
model supports only 2-D real and complex-valued matrices.

The MATLAB interpreter’s working directory is set to the ScriptDirectory parameter,
if it is given. Any custom MATLAB models will be searched for there, and any output
files will be written there.

Figures generated by a MATLAB model are managed according to the value of the
DeleteOldFigures parameter. If this parameter is YES, the MATLAB model will close
any MATLAB plots or graphics when it is destroyed. If NO, the figures must be
manually closed.
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Writing Functions for the MATLAB Models

There are several ways in which MATLAB commands can be specified in the
MATLAB models in the MatlabFunction parameter.

If only a MATLAB function name is given for this parameter, the function is applied
to the inputs in order. The function’s outputs are sent to the model’s outputs.

For example, specifying eig means to perform the eigendecomposition of the input.
The function will be called to produce one or two outputs, according to how many
output ports there are. If there is a mismatch in the number of inputs and outputs
between the Agilent Ptolemy model and the MATLAB function, then an error will be
reported by MATLAB.

You may also explicitly specify how the inputs are to be passed to a MATLAB
function and how the outputs are taken from the MATLAB function. For example,
consider a two-input, two-output MATLAB model to perform a generalized
eigendecomposition. The command

[output#2, output#1] = eig( input#2, input#1 )

says to perform the generalized eigendecomposition on the two-input matrices, place
the generalized eigenvectors on output#2, and the eigenvalues (as a diagonal matrix)
on output#1. Before this command is sent to MATLAB, the pound characters “#” are
replaced with the underscore character “_” because the pound character is illegal in a
MATLAB variable name.

The MATLAB models also allow a sequence of commands to be evaluated. Continuing
with the previous example, we can plot the eigenvalues on a graph after taking the
generalized eigendecomposition:

[output#2, output#1] = eig( input#2, input#1 ); plot( output#1 )

When entering such a collection of commands in Agilent Ptolemy, both commands
appear on the same line without a new line after the semicolon. In this way, very
complicated MATLAB commands can be built up. We can make the plot of
eigenvalues always appear in the same plot without interfering with other plots
generated by other MATLAB models with this function. (New lines are inserted after
the semicolons to improve readability.):

[output#2, output#1] = eig( input#2, input#1 );

if ( exist(myEigFig’) == 0 ) myEigFig = figure; end;
figure(myEigFig);

plot( output#1);
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Introduction to MATLAB Cosimulation

The parameters MatlabSetup and MatlabWriteUp are called during the model’s
begin and wrap-up procedures. During each of these procedures, there is no data
passing into or out of the model.

Because the same MATLAB interpreter is used for the entire simulation, variables
are preserved from iteration to iteration. For example, the output of a Matlab_M
model with settings:

MatlabSetUp = “x=ones(2;1)”
MatlabFunction = “output#1=x(2)/x(1); x=[x(2),sum(x)];”

will converge on the golden mean. It is impossible, however, to share variables
between different MATLAB components. Such a simulation would be
non-deterministic.

Examples

We recommend studying the MATLAB examples in the Advanced Design System
examples directories. From the ../examples/DSP directory, choose the dsp_demos_pr;j
project. The Sombrero network demonstrates how to use each of the three MATLAB
models effectively. Sombrero is a simple example that plots a sinc function.

To see an example of how to call a MATLAB .m file, refer to the
../examples/DSP/MATLABIink_prj project.
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Chapter 11: Cosimulation with Analog/RF
Systems

Simulation of behavioral DSP designs along with analog/RF circuit designs is critical
to the success of the integrated components, devices, and subsystems used in today’s
wireless applications. The need to verify the impact of real-world analog/RF issues on
the DSP algorithms and vice versa in a tightly integrated environment is highly
desirable.

For designs of low complexity, it is possible to use separate simulators for the signal
processing and analog/RF portions and then integrate the results. However, today’s
state-of-the-art designs using a mix of analog/RF and dedicated on-chip DSP blocks
require high levels of integration at the two-environment boundary. Advanced Design
System cosimulation between signal processing and circuits addresses this need.
Agilent Ptolemy provides the signal processing simulation, while the analog/RF
simulation is provided by either the Circuit Envelope or High-Frequency SPICE
(Transient) simulators.

Other types of cosimulation include placing MATLAB components or HDL blocks in a
signal processing simulation. This chapter describes cosimulation with Analog/RF
Systems.

Figure 11-1 shows a mixture of RF circuitry and DSP components. The Advanced
Design System provides a variety of analog/RF circuit simulators, including Linear,
Harmonic Balance, Circuit Envelope, High-Frequency SPICE, and Convolution. For
signal processing simulation, Agilent Ptolemy is used. Only circuits simulated with
either Circuit Envelope or High-Frequency SPICE can be instantiated as a
subnetwork and included in a signal processing schematic. These circuit blocks can
then be simulated along with signal processing components. The steps needed for
cosimulation are outlined next.

Digital RF Radio RF 2nd IF Digital
Tx » Upconv ® Channel |~ ™ Downconv |~ ] Stage ™ Receiver
HP Circuit HP Circuit High-Freq. HP
Ptolemy Envelope Ptolemy Envelope SPICE Ptolemy

Figure 11-1. Cosimulation: Different Design Portions Simulated by Different
Simulators in the Same Schematic
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Note Circuit Envelope and High-Frequency SPICE simulators are included with
some, but not all, Advanced Design System suites.

Setting Up the Analog/RF Circuit Schematic
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Figure 11-2. Diode Rectifier—Circuit Design Used in Cosimulation
The following general steps are used to create circuit designs for cosimulation.

1. In the analog/RF circuit Schematic window, create a circuit schematic that
includes a simulation component for either Circuit Envelope (called ENV) or
High-Frequency SPICE simulation (called TRAN).

2. Generally, use Circuit Envelope for an RF simulation and High-Frequency
SPICE (transient) for a baseband simulation.

3. Do not use both Envelope and Transient simulators in the same design. Use the
deactivate and activate commands if you want to keep both controllers in your
design.

4. Add ports to your design.
5. Save your design.

In the above figure, a diode rectifier is set to be simulated with the Circuit Envelope
simulator. Next, we will place this subnetwork in the signal processing schematic,
where it will be represented as a block.
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Setting Up the Signal Processing Schematic

Circuit Design EnvOutSelector Component Used
(Diode Rectifier) T ﬁ with Circuit Envelope Cosimulation
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Figure 11-3. Signal Processing Design Using Circuit Shown in Figure 11-2
To create signal processing designs for cosimulation:

1. To place the circuit subnetwork(s) you have already created in the signal
processing schematic, choose Component > Component Library. Your opened
projects are listed at the top of the list. Circuit projects have (A/RF) at the end.

2. Choose the circuit design you want and place it in your signal processing
schematic.

3. Add the signal processing components.
4. Add the signal processing controller(s).
5. Connect the circuit design to the signal processing components.

6. For cosimulation with the Circuit Envelop simulator, see Circuit Simulation
Controllers, later in this section.

7. If your circuit subnetworks have feedback loops between them, see Feedback
Loops, later in this section.

Setting Up the Signal Processing Schematic 11-3



Cosimulation with Analog/RF Systems

8. If the input signal into the circuit subnetwork is not of type Timed, see
Numeric-to-Timed Converters, below.

9. Start the simulation.

Circuit Simulation Controllers

As stated earlier, Agilent Ptolemy can cosimulate with only the Circuit Envelope or
High-Frequency SPICE simulators. Any circuit simulation control components other
than ENV or TRAN (such as for harmonic balance or S-parameter simulation) are
ignored in the cosimulation from the signal processing schematic.

Numeric-to-Timed Converters

Both Circuit Envelope and Transient simulators deal with time-domain signals.
Therefore, signal processing components connected to the circuit subnetwork need to
be of type Timed. If the input component (connecting the signal processing
components to the circuit) produces numeric data, place the appropriate
numeric-to-timed converter (such as float-to-timed or complex-to-timed) in your
schematic. These components are found in the Signal Converters library, and assure
that the input into the circuit subnetwork is in the time domain. Refer to “Time
Converters” on page 11-10 for more information on this topic.

Clustering of Circuit Subnetworks

Clustering is the process of defining the boundaries of the signal processing and
analog/RF simulators. Initially, this boundary is defined by circuit schematics, where
you define the circuit subnetworks and then make an instance of those on the Signal
Processing schematic. However, there is a bit more to clustering than what is on the
two schematics.

Circuit subnetworks directly connected in the Signal Processing schematic are
automatically clustered by the program and treated as one circuit subnetwork, as
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shown in Figure 11-4. Therefore, use only one circuit simulation control component in
either of the two (or more) directly connected subnetworks.

Signal Circuit 1 Circuit 2 Signal
o—» : — . —
Processing Subnetwork Subnetwork Processing ¢
N s/
AN /
AN 7/
Signal Circuit Signal
o—— —®0

Processing [ Subnetwork ™ Processing |

Figure 11-4. Connected Subnetworks Treated as One

Connected Circuit Subnetworks

For example, what happens when two circuit subnetworks defined on two different
circuit schematics are connected on a Signal Processing schematic? The two circuit
subnetworks are clustered into one by the program. This should not concern the user,
since this would be done transparently. However, if each of these two circuit
subnetworks use their own simulation controller, then the circuit engine would not
know which one to choose for simulation. This would result in an error message.

Connected Resistors

Another aspect of clustering is when circuit components available on the Signal
Processing schematic (resistors in the first release of Advanced Design System) are
connected to a circuit subnetwork. In this case, such resistors will be absorbed into
the circuit subnetwork during the clustering and will be simulated by the circuit
engine as part of circuit subnetwork.

Feedback Loops

Circuit subnetworks that form a feedback loop via signal processing components
require a delay component in the feedback loop to facilitate the signal processing
simulation scheduling, as shown in Figure 11-5 and Figure 11-6. If such a delay is not
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present, an error message will be issued. To have the program automatically insert
the delay, you need to edit the parameters for the Data Flow controller. To do this,
double-click the controller and choose the Options tab and then Resolve deadlock by
inserting tokens from the Deadlock Management drop-down list. For more
information about deadlocks, refer to “Deadlocks” on page 9-7 in Chapter 9, Theory of
Operation.

Signal
Processing

Signal _ Circuit 1 || Circuit 2 Signal
Processing Subnetwork Subnetwork | ™| Processing

y

Figure 11-5. Feedback Loop Before Delay Added by Program

Delay Signal
Component ‘ Processing
Signal Circuit Signal
© ™| Processing Subnetwork Processing ¢
>

Figure 11-6. Feedback Loop After Delay Added by Program
(Delay Not Shown on Schematic)

Named Connections and Measurements in Circuit
Designs

Named connections and measurements included in the circuit schematic design (such
as for a voltage) are ignored in cosimulation. The only results you get from a
cosimulation are obtained from the Signal Processing schematic using Sink
components or Interactive Components and Displays items.
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Circuit Envelope Specific Rules

The output of the Circuit Envelope simulator is a collection of time waveforms, each
at a different fundamental frequency. You need to select the waveform you want by
specifying this fundamental frequency. You do this by choosing the EnvOutSelector or
EnvOutShort component from the Circuit Cosimulation library. Refer to
“EnvOutSelector and EnvOutShort Components” on page 11-11 for more
information. You should place this component at all circuit subnetwork output ports
in the Signal Processing schematic.

Circuit Envelope simulation requires that many parameters be set up in the circuit
schematic. For more information, refer to Advanced Design System circuit simulation
documentation. For cosimulation, the key parameter is the Step parameter. This is
the time step used by the simulator, and can be set equal to or less than the time step
at the connecting port in the signal processing schematic design. Other important
parameters for cosimulation (especially nonlinear designs) are MaxOrder, Freq| 1,
and Order[ ]. Make sure that the OutFreq parameter specified at the EnvOutSelector
is among the fundamental frequency or harmonics specified by the Circuit Envelope
controller.

Transient Simulation Specific Rules

When cosimulation with Agilent Ptolemy and the Transient simulator is required,
the circuit schematic must have a Transient controller (also called a simulation
component). No explicit user setting is required for the Transient controller. That is,
the default parameters will work for cosimulation. However, the Transient
controller’s Freq [x] parameter is required whenever there are any
frequency-dependent sources. The Freq [x] parameter specifies the fundamental
frequency.

Nested Simulation Approach

Advanced Design System cosimulation is based on a nested simulation approach. In
this use model, you first create your circuit designs on the circuit schematic. This
circuit design can be tested using appropriate circuit sources and measurements with
either the Circuit Envelope or High-Frequency SPICE simulators. Once the circuit
design has been verified, ports to be interfaced with the signal processing design are
identified and placed. Next, you place an instance of the design on the Signal
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Processing schematic and connect it to the other blocks. The combined schematic
design can now be simulated.

Signal Processing Model of the Circuit Network

Agilent Ptolemy uses a data flow simulation approach, and this simulation is
controlled using the Data Flow Controller component. To understand this chapter,
you need to be aware that this simulation is based on invoking a schedule. A schedule
tells the simulator engine to “fire” components in a certain order and with a certain
frequency. A simulation is typically a repetition of a schedule many times.

From the Data Flow engine perspective, a circuit subnetwork on the Signal
Processing schematic is just a component with a certain number of input and output
ports. This circuit subnetwork is part of the schedule determined by the Data Flow
engine. It would be fired just like any other component according to the schedule, and
as many times as required. Every time the circuit subnetwork is fired, the circuit
simulator (designated by the simulation controller on the circuit schematic)
continues to carry on the simulation based on the input it receives from the signal
processing interface. Once the circuit simulator is finished with its analysis, it passes
the simulation results back to the signal processing interface. This cycle repeats as
many times as the scheduler requires. The duration of the circuit simulation each
time it is invoked is determined by the time step provided by the connecting signal
processing component at the input interface to the circuit subnetwork.

Circuit Model of the Signal Processing Network

From the circuit simulator engine point of view, the signal processing input interface
is viewed as an ideal (0 ohm impedance) source. The more ports at the input interface
to the circuit, the more ideal sources there will be feeding the circuit subnetwork. At
the output interface of the circuit, there would be a node where the results are shared
with the connecting signal processing component.

Interface Issues

At the interface boundary of the signal processing and analog/RF circuit simulators,
there needs to be an exchange of information. The semantics and fundamentals of
simulation in the two application areas are quite different and therefore, you need to
understand these differences for proper use. The following sections outline the most
important aspects of this interface.
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Time Step

Time samples for signal processing are one fixed time step apart. However, both
Envelope and Transient simulators define the time step in the simulation controller
with various options.

The Transient Simulator controller component has several parameters, including
Start time, Stop time, Min time step, and Max time step (see the Time Setup tab). In
addition, the Integration tab contains a time step control method parameter with
Fixed, Iteration Count, and Truncation Error options. For more information, refer to
the RF Transient/Convolution Simulation chapter in the Circuit Simulation manual.

For cosimulation with the Transient simulator, keep in mind one key issue: The
Transient simulator may need time steps smaller than Agilent Ptolemy’s Time Step
to satisfy its own setup requirements. In addition, the Transient simulator, when
needed, will take additional time steps to match the time points in the signal
processing simulation. Only time steps that match the signal processing time points
will be passed on to Agilent Ptolemy.

Note For all practical purposes, the only parameter that may concern the
cosimulation user is the Max time step. The rest of the parameters in the Transient
Simulation control component can be left at default value.

For the Circuit Envelope simulator, the time step parameter in the ENV Simulation
controller component should be set equal to or less than the Time Step at the
signal-processing-to-circuit interface.

Setting the Analog/RF subnetwork time step for Circuit Envelope (Envelope) or
Transient (Tran) cosimulation: The Envelope controller parameter Time step or the
Tran controller parameter Max time step should be set equal to a submultiple of the
DSP Schematic DataFlow controller (DF) simulation time step. Call this ¢step. You
can set this value and pass it into the Analog/RF circuit with Time step or Max time
step set equal to tstep/N, where N is a user-defined integer typically greater than 1.
Set N>1 when necessary, such as when the Envelope or Tran simulation signal
spectrum is important, or when accuracy issues are important.

Note The Stop time for the simulation is determined by the Signal Processing’s
Data Flow controller and/or Sinks. The Circuit Envelope or Transient component’s
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Stop time is not relevant.

Delays in Feedback Loops

As stated earlier, Data Flow simulation requires that a Delay component exist in the
feedback loops for proper activation of the schedule. Circuit subnetworks that form a
feedback loop, for this same reason require a delay component in their path.
Typically, a Delay_Rf component in such feedback loops will suffice. If such a delay
does not exist, Agilent Ptolemy will report a deadlock by default.

Time Converters

The common signal being exchanged between signal processing Data Flow
components and the circuit simulators (Circuit Envelope and Transient) is a
time-domain signal. All three engines, hence, deal with the notion of time step.

The signal entering the circuit subnetwork should be Timed. The Transient
simulator deals only with real-baseband time-domain signals while Circuit Envelope
can handle both baseband and complex envelope timed signals.

If the signal entering into the circuit subnetwork is not Timed (that is, the signal is
Numeric), you should place a FloatToTimed, FixedToTimed, IntToTimed, or
CxToTimed converter to accommodate the conversion. Although Agilent Ptolemy will
place appropriate converters when they do not exist, it is always a good practice to
explicitly place and connect these converters in your design. This will ensure that the
input parameters into the circuit subnetwork are correct, as well as helping to debug
possible errors that might occur.

Carrier Frequency

In the case of cosimulation with the Circuit Envelope simulator, the timed signal
entering the circuit subnetwork is typically a carrier-modulated timed signal. This
means that timed data has an F field that is passed to the Circuit Envelope
simulator, which is needed by the simulator. The Circuit Envelope simulator,
depending on a particular design, will generate a number of time-domain waveforms,
each associated with a carrier (harmonic) frequency. Since Agilent Ptolemy supports
only one carrier frequency at each node, you need to select which one of the
waveforms you desire in the signal processing portion of the design. This is done by
placing a Circuit-Envelope specific component described next.
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EnvOutSelector and EnvOutShort Components

When cosimulating with the Circuit Envelope simulator, additional information is
needed for proper cosimulation. This is done by connecting an EnvOutSelector or
EnvOutShort component (from the Circuit Cosimulation library in the Signal
Processing schematic) to each output port of the subnetwork design.

The EnvOutSelector component acts as an open, blocking everything connected to its
output from loading the circuit. If such loading is desired, use the EnvOutShort
component. The EnvOutShort component acts as a short and therefore loads the
circuit with the connecting Signal Processing components.

The EnvOutSelector and EnvOutShort components have a parameter called OutFreq.
OutFreq specifies which waveform is selected from the time-domain waveforms at the
output of the Circuit Envelope simulator. OutFreq has the following options:

* Lowpass—selects the time-varying DC component.
* Bandpass—(default) lets you specify any frequency.
¢ Allpass—forms the composite (baseband) signal.

One or more EnvOutSelector components can be connected to each output port of a
circuit subnetwork, refer to Figure 11-7, below. This means that all waveforms
generated by the Circuit Envelope simulator can be accessed in the Signal Processing
schematic.

Signal - _ | Signal Signal
Processing | =] CIreuitX EnvOut Selector =/ processing || Processing
Ptolemy Circuit OutFreq=10 MHz Ptolemy Ptolemy
Envelope
EnvOut Selector | p| 2/9N2I

> .
Processing

OutFreq=20 MHz Ptolemy

Figure 11-7. EnvOutSelector Components at each Circuit Subnetwork Output Port

If either the EnvOutSelector or EnvOutShort component is used with a design
simulated by the Transient simulator, their effect is to be either an open or a short,
respectively. Other than this, they do not affect transient cosimulation designs, so
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this component can be left in place without any impact on the cosimulation with the
Transient simulator.

Snapping Rule

In the Bandpass option of the OutFreq parameter, you can type in the desired
fundamental whose time waveform you are interested in. If the frequency you specify
does not exist in the list of fundamentals, the interface program will search and snap
to the nearest fundamental. Presently, anything within 0.01% of a fundamental will
be snapped to that fundamental frequency. If the frequency specified in the Bandpass
option of OutFreq is not within 0.01% of the fundamental, a default value of 100 MHz
will be used and a warning message issued.

Troubleshooting Common Problems

Although the cosimulation use model is intuitive, there are a few pitfalls you should
know about to avoid errors:

1. At present in Advanced Design System, only the Transient and Circuit
Envelope circuit simulators can cosimulate with Agilent Ptolemy. Other circuit
simulation controllers on the analog/RF schematic (such as S-parameter or AC)
will be ignored in cosimulation.

2. Directly connected circuit subnetworks placed as instances on Signal
Processing schematics are clustered together and hence should be considered as
one circuit subnetwork. This means that if each of these subnetworks has their
own circuit simulation controller, an error message will be issued. To avoid such
problems you can either:

® Deactivate all controllers but one on the circuit schematics.

* Connect a signal processing component between the two circuit subnetworks,
thereby preventing the two subnetworks from being clustered into one.

3. Resistor components that are part of hierarchical designs of timed components
in the Signal Processing schematic will be absorbed into connecting circuit
subnetworks by the program. If the EnvOutSelector component is used, the
absorbed resistors will not load the circuit, since the circuit model is an open. If
the EnvOutShort component is used, the absorbed resistors will load the
circuit, and the results will be different by a scale factor.

4. Since resistors that are part of timed subnetworks are absorbed into connecting
circuit subnetworks, you should avoid placing a sink or any other signal
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processing component directly at this port, when cosimulating with Circuit
Envelope. If placed, an error message is issued, requiring an EnvOutSelector
component to be placed. The reason for this condition is the fact that the sink
now constitutes an output port from the perspective of the circuit subnetwork.

Cosimulation Example

To illustrate cosimulation, we will use an example called RectifierCosim_prj.

Copying and Opening the Project

1. From the Main window, choose File > Copy Project . A dialog box appears.

Note On UNIX platforms, you will not be able to work in the Advanced Design
System Examples directories. You must copy the example project to a directory for
which you have write permission. On PC platforms, while you can work in the
Examples directories if you want, it’s still a good idea to copy the examples to another
directory.

2. In the From Project field, click the Examples Directory button, and then the
Browse button. The File Browse dialog box appears with the Example
directories listed.

3. Select the /Com_Sys directory.
4. Select RectifierCosim_prj from the list of files in the Files field.

5. In the To Project field, click the Startup Directory or Working Directory button
(depending on where you want to copy the project to) or choose the Browse
button if you want to select another directory.

6. Choose Copy Project Hierarchy . This ensures that all the appropriate directories
and files will be copied.

7. Click OK to copy the project and close the dialog box.

8. From the Main window, choose File > Open Project . When the Open Project
dialog box appears, select <the directory you copied the example to>  in the
Directories field, then double-click RectifierCosim_prj in the Files field.
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Rectifier Schematic

The top level design RectifierCx_Tutorial, as shown in Figure 11-8, generates a
complex modulated signal and sends that signal into a simple rectifier circuit.

£

e

Figure 11-8. RectifierCosim Project Top-Level Schema.ttic

Two identical instances of this rectifier circuit are created on a circuit schematic, one
with a TRAN controller (rct_Tran), Figure 11-9, and the other with an ENV
controller (rct_Env), Figure 11-10.
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Figure 11-10. Circuit Subnetwork with Circuit Envelope Controller

To view the circuit subnetworks from the top-level design, choose View > Push Into
Hierarchy or click the Push Into Hierarchy button (down arrow) from the toolbar.

The circuit design in both rct_Tran and rct_Env is a simple diode with a shunt
parallel RC attached to its output. Note the placement of ports and that rct_Env has
an Circuit Envelope controller, while rct_Tran a Transient controller. The two circuit
designs are then placed on the Signal Processing schematic.
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On the Signal Processing schematic, the generation of complex modulated signals is
accomplished via a RectCx component that generates a periodic pulse with a complex
amplitude. This complex pulse is then fed into a CxToTimed component that
effectively upconverts the signal. The TStep is set to 0.01 psec and the carrier is at 11
MHz. This modulated RF signal is then split into two branches by a SplitterRF
component and fed into the rct_Tran and rct_Env circuit subnetworks. In addition,
there are TkPlot components (which display the simulation results) attached to the
output of RectCx and CxToTimed to monitor the signal before simulation.

Since the T'Step of the signal entering circuit design is at 0.01 psec, the MaxTimeStep
on the Transient controller is set to the same value. This value should always be
smaller than or equal to the Signal Processing TStep. The other Time setup
parameters, such as Start time and Stop time, are ignored in the Transient
cosimulation. Note that the output of rct_Tran is directly fed into a TkPlot without an
interface component.

Similarly for the Circuit Envelope simulator, the Step parameter of the simulation
controller should be set less than or equal to the Signal Processing TStep. Other
parameters of interest are Freq[], Order[], and MaxOrder, which specify the
fundamentals and related harmonics to be analyzed. In this example, the
fundamental of interest is Freq[1] = 11MHz and the MaxOrder and Order[1] are set
to 5. Note also, that Freq[0] is the dc term that is always available.

Typically, there is only one EnvOutSelector component attached to the Circuit
Envelope subnetwork output, but in this example we have used three to show the
different signals that can be selected from the Circuit Envelope output. Specifically,
the OutFreq parameter is set to the Bandpass, Allpass and Lowpass options in the
three instances. When the Bandpass option is selected, the dialog box changes so you
can enter the desired fundamental frequency. In this case, OutFreq is set to 11 MHz.
The output of EnvOutSelectors are then fed into three interactive TkPlot display
components.

When we simulate this design, a total of six TkPlot windows pop up, as shown on the
following three pages.
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The plot Complex Bits displays the magnitude of the complex periodic pulse and the
plot Rectifier Input depicts the pulse-modulated signal at 11 MHz.
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The plot Transient Output is the rectified version of the modulated signal (note that
there are no negative components in the signal), where the value of the time constant
(RC) determines the degree of pulse fall-off. Note also that this output is a
real-baseband signal and includes all the harmonics.

On the next page, the Allpass, Bandpass, and Lowpass ouput plots are shown.
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Chapter 12: Using Interactive Controls and
Displays

Agilent Ptolemy contains a library of 19 Interactive Control and Display components.
These components provide real-time simulation input control and animated plots of
your simulation results. Interactive Displays represent one of two general use models
for viewing simulation results.

In contrast, the main Advanced Design System method to display simulation results
is to save your simulation data and open a Data Display window to view the results.
You can set up your schematic for both methods, by placing both an Interactive
Control and Display component and a Sink. The following table describes the two
basic use models for displaying results:

Table 12-1. Comparison of Simulation Results Methods

Method Description

Interactive Controls | Animated displays of simulation results and interactive control
and Displays items. Data is not saved. No post processing. Display starts
during simulation.

Data Display Window | Data is saved after simulation is complete. You open a Data
Display window, choose a plot type, parameters to plot, and have
many data manipulation options.

The Interactive Control and Display components are a quick and easy way to display
your simulation results. They also give you a way to interactively change parameters
while your simulation is running and display animated plots.

The Interactive Controls and Displays were derived from a scripting language called
Tool Command Language (Tcl) and the Tool Kit attached to Tcl (Tk). These were
originally developed at the University of California at Berkeley. Therefore, the
abbreviations Tcl or Tk appear in the component names.

Note To use the Interactive Controls and Displays library components (such as
TkPlot) with Advanced Design System’s tune mode, you must dismiss the Interactive
Controls and Displays component between each tune with its pop-up dialog box.
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List of Interactive Control and Display Components

Table 12-2 shows the Interactive Controls and Displays library.
Table 12-2. Interactive Controls and Displays Library

Descriptive Name Component Name
Interactive Slider TkSlider

Plot Inputs versus Time TkPlot

Display History of Input Values TkText

Input Values Display TkShowValues
Plot Y versus X Inputs TkXYPlot

Bar Chart Display TkBarGraph
Interactive Complex LMS Adaptive Filter LMS_CxTkPlot
Interactive LMS Adaptive Filter LMS_TkPlot
Interactive Buttons TkButtons
Conditional Breakpoint TkBreakPt

Bar Meters Display TkMeter
Booleans Display TkShowBooleans
Baseband Equivalent Channel TkBasebandEquivChannel
Invoke Tcl Script TclScript

Eye Diagram TkEye

IQ Constellation Diagram TkConstellation
Histogram Diagram TkHistogram
Display rms value of input IQ signal TKIQrms

Signal Power Display in dBm TkPower

In this chapter, you will find:
¢ An introduction to the Interactive Control and Display components.

¢ Cross-references to the Signal Processing Components manual, which contains
a description of the parameters associated with each component.

* References to application examples shipped with Advanced Design System that
contain or illustrate various Interactive Control and Display components.
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TkSlider and TkPlot Components Example

The following figure is taken from the ../examples/DSP/dsp_demos_prj project. It is
called EYE. If you want to run this example, copy the project from the examples
directory to a directory for which you have write permission, using the File > Copy
Project command.

The EYE schematic uses an Interactive Control component called TkSlider to adjust
the amount of noise added to the pulse stream. You then can instantly see the
simulation results change in an animated display provided by the TkPlot component.
TkPlot simply plots one input on the Y-axis versus time, or sample number, on the
X-axis.

F o] - A2} AT

g (e

TkSlider Component — TkPlot Component

Figure 12-1. Schematic Using TkSlider and TkPlot Components

When you begin simulation of a design using TkSlider, the dialog box shown in
Figure 12-2 is displayed.

=] Agilent Ptolemy Control Panel | ]
Fause | Quit
Noise Magnitude: 0.0 =

Slider Control

Figure 12-2. TkSlider is Interactively Controlled by This Dialog Box
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This dialog box is called the Agilent Ptolemy Control Panel. At a minimum, the Pause
and Quit buttons are shown. One of the parameters for TKSlider is called
PutInControlPanel. If the default of Yes is accepted, the slider is put in the Control
Panel. (If you choose No for this parameter, a separate box will be displayed for each
slider.)

With the slider control all the way to the left, 0.0 noise is added and the resulting
clean eye-diagram plot is shown below.

F1.48

074l
0.00

-0.74 ¢

-1.48
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0.00 .55 1.11 1.66 222 2707

Figure 12-3. Eye Diagram Plot with Noise at 0.0

The slider control can be adjusted, as shown in the next figure.

= Agilent Ftolemy Control Panel [ =5
Fause | Quit |
Hoise Magnitude: 0.37 | |

Llider Control Moved to the Right

Figure 12-4. Slider Control Moved to Add Noise
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If you move the slider to the right so that the Noise Magnitude is 0.37, the animated
plot changes to display the poor eye diagram shown in Figure 12-5.

T1.48
074 RREA
0.00 |

-074 ¢

Figure 12-5. Eye Diagram Plot with Noise at 0.37

More or less noise can be added and the results will be shown immediately.

For complete parameter description, see TkSlider (Interactive Slider) or TkPlot (Plot
Inputs versus Time) in the Signal Processing Components manual.

Placing Multiple TkSlider Components

Placing multiple TKSlider components in a schematic will result in multiple sliders
in the Control Panel, as shown below. You can type a label for each by editing the
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parameters on-screen or double-clicking the component to bring up the Component
Parameters dialog box.

= HP Ptolemy Control Panel BIE
Fause Quit
Echo Amplitude: 0.0 P
LOS Amplitude: 100.0 T
Phase Shift: 0.0 P
Noise: 0.0 Pl

Figure 12-6. Control Panel with Multiple TkSliders

TkText and TkShowValues

The TkText component simply displays the input values in text form, as shown below.
This is an input history.

=] Text Display _

Inputs to TkTexzt:10
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The TkShowValues component works in a similar manner, except only one value is
shown at a time (rather than a history). This value is displayed in the lower part of
the Agilent Ptolemy Control Panel, as shown below.

= HP Ptolemy Control Panel |-l
Continue | Quit
Noise Magnitude: .25 | |

Inputs to TkShowValues:

0.129549166622340

For complete parameter description, see TkText (Display History of Input Values) or
TkShowValues (Input Values Display) in the Signal Processing Components manual.

TkXYPlot Component

The following figure is taken from the ../examples/DSP/dsp_demos_prj project. It is
called EQ_16QAM. If you want to run this example, copy the project from the
examples directory to a directory for which you have write permission, using the File
> Copy Project command.

Several TkXYPlot components are placed in this design to show animated results
where two inputs, X versus Y, are to be plotted. In this example the TkXYPlot
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components are used to display constellation diagrams. The equalized constellation
diagram is shown in Figure 12-8.

TkXYPIlot
of Constellation
Diagram

L— TkXYPlot Component

Figure 12-7. Equalized 16 QAM System with Multipath and Phase Noise.

For complete parameter description, see TkXYPlot (Plot Y versus X Inputs) in the
Signal Processing Components manual.

Fila Tiew

Constellation (Equalized)

Figure 12-8. TkXYPlot for Equalized Constellation Diagram
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TkBarGraph

The TkBarGraph component displays input (multiple anytype) data in a bar graph
format. Different inputs are assigned different colors, up to 12, then the colors are
repeated. A TkBarGraph example is shown in Figure 12-9.

—-i bar chart display |= | [

File View

1ﬂ||| II
II'I- II

Figure 12-9. TkBarGraph Display

For complete parameter description, see TkBarGraph (Bar Chart Display) in the
Signal Processing Components manual.

LMS Adaptive Filter Components

There are two LMS adaptive filter components in the Interactive Controls and
Displays library: LMS_CxTkPlot and LMS_TkPlot. They are the same except that
the former expects complex data and the later expects real data.

An example of this component can be found in the same project we have just used:
../examples/DSP/dsp_demos_prj project. It is called EQ_16QAM, and is shown in
Figure 12-10.

Both LMS components implement an adaptive filter using the least-mean square
algorithm, also know as the stochastic-gradient algorithm.

The size of the LMS filter is determined by the number of coefficients in the Taps
parameter; the default gives an 8th-order, linear-phase lowpass filter. LMS supports
decimation, but not interpolation.
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The filter coefficients can be specified directly or read from a file. To load filter
coefficients from a file, replace the default coefficients with the string <filename (use
an absolute path name for the filename to allow the filter to work as expected
regardless of the directory where the simulation process actually runs).

When used correctly, this LMS adaptive filter will adapt to try to minimize the
mean-squared error of the signal at its error input. The output of the filter should be
compared to (subtracted from) some reference signal to produce an error signal. That
error signal should be fed back to the error input. The ErrorDelay parameter must
equal the total number of delays in the path from the output of the filter back to the
error input. This ensures correct alignment of the adaptation algorithm. The number
of delays must be greater than 0 or the simulation will deadlock.

If the SaveTapsFile string is non-null, a file will be created with the name given by
that string, and the final tap values will be stored there after the run has completed.

LMS_CxTkPlot Component

Figure 12-10. LMS Adaptive Filter (Complex) Component in the 16 QAM System
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The plot generated from this design upon simulation is shown in Figure 12-11.
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Figure 12-11. Plot Resulting From LMS_CxTkPlot FilterTaps Parameter

For complete parameter description, see LMS_CxTkPlot (Interactive Complex LMS
Adaptive Filter) or LMS_TEPlot (Interactive LMS Adaptive Filter) in the Signal
Processing Components manual.

TkButtons

Like TkSlider, TkButtons produces an output. The data type of the output is multiple
anytype. TkButtons outputs 0.0 unless the corresponding button is pushed, when the
output becomes the value assigned in the parameter Value. You can assign your own
identifiers using strings for the corresponding parameter.

~i HP Ptolemy Control Panel |- iJ|

Pause Quit

Buttons you can push:

BUTTCN1

For complete parameter description, see TkButtons (Interactive Buttons) in the
Signal Processing Components manual.
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TkBreakPt

TkBreakPt allows you to pause or stop a simulation. Its principal use is to help debug
simulations. You can stop the simulation based on a condition of the model’s inputs.
The parameter syntax is described in TkBreakPt (Conditional Breakpoint) in the
Signal Processing Components manual.

TkMeter

TkMeter dynamically displays the value of any number of input signals on a set of
bar meters. The input type is anytype. These values are displayed in the lower part of
the Agilent Ptolemy Control Panel, as shown below.

Continue | Quit

Noise Magnitude: 0.0 |2

sliding scale display

Fro I e

For complete parameter description, see TkMeter (Bar Meters Display) in the Signal
Processing Components manual.

TkShowBooleans

The TkShowBooleans component works in a similar manner to TkShowValues,
except that a Boolean value of zero (false) or non-zero (true) is shown. This value is
displayed in the lower part of the Agilent Ptolemy Control Panel, as shown below.

Inputs to TkShowBooleans:
BOOL : TRUE

For complete parameter description, see TkShowBooleans (Booleans Display) in the
Signal Processing Components manual.
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Baseband Equivalent Channel

The TkBasebandEquivChannel component is a subnetwork as shown in

Figure 12-12. It models a baseband equivalent channel with linear distortion,
frequency offset, phase jitter, and additive white Gaussian noise. You can
dynamically set many of the channel model parameters. TkBasebandEquivChannel
accepts complex data and outputs the input signal plus distortions.

To model linear distortion, such as intersymbol interference, the input signal is
passed through a complex FIR filter with the taps set by LinearDistortionTaps. The
frequency offset distortion is set by the Freq. Offset slider control. Similarly, the
phase jitter amplitude (peak-to-peak, in degrees) is set by the Phase Jitter slider
control while the phase jitter frequency is set by the PhaseditterFrequencyHz
parameter. The phase of both the frequency offset and the phase jitter can be reset
with the Reset Phase control button. The amplitude of the added complex white
Gaussian noise is set by the Noise Power slider control.

Figure 12-12. TkBasebandEquivChannel Component Subnetwork

For complete parameter description, see TkBasebandEquivChannel (Baseband
Equivalent Channel) in the Signal Processing Components manual.
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Invoke Tcl Script

TeclScript reads a file containing Tcl commands. It can be used in a variety of ways,
including using Tk to animate or control a simulation. A number of procedures and
global variables will have been defined for use by the Tcl script by the time it is
sourced. These enable the script to read the inputs to the component or set output
values. The Tcl script can optionally define a procedure to be called by Agilent
Ptolemy for every simulation of the component.

The parameter syntax is described in TclScript (Invoke Tcl Script) in the Signal
Processing Components manual.

TkEye, TkConstellation, TkHistogram, TklQrms, and
TkPower

These TclTk components generate an eye diagram, an 1Q constellation diagram, a
histogram diagram, a display of the rms value of the IQ input signal, and a signal
power display in dBm, respectively. For more information on these components, refer
to Interactive Controls and Displays in the Signal Processing Components manual.

Additional Resources on Tcl/Tk

As stated earlier, the Interactive Controls and Displays Library was created using
Tcl/Tk. Some users may want to explore this language further to write their own
applications.

Tel is a language that was created to be easily embedded into applications. Tk is a
graphical toolkit that makes creating user interfaces easier. Both were created by
John Ousterhout while he was a professor at U.C. Berkeley.

Books

[1]John K. Ousterhout, Tcl and the Tk Toolkit (Addison-Wesley Professional
Computing), Addison-Wesley Publishing Company. May 1994.

[2] Brent B. Welch, Practical Programming in Tcl & Tk, Prentice Hall: Englewood
Cliffs, Nd. July 1997. 2nd Bk and cdr Edition.
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[3]1Mark Harrison and Michael J. McLennan, Effective Tcl/ Tk Programming:
Writing Better Programs in Tcl and Tk, Addison-Wesley Publishing Company.
November 25, 1997.

World Wide Web

The following Web URL is a good place to start looking for information on Tcl/Tk:
http://www.yahoo.com/Computers_and_Internet/Programming_Languages/Tcl_Tk/
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Chapter 13: Building Signal Processing
Models

Agilent Ptolemy provides rich libraries of component models in Advanced Design
System (ADS). However, you might want to create your own C++ component models
to add to these libraries. Agilent Ptolemy includes the Model Development Kit, a
feature that allows you to create, compile, and link your models into Agilent Ptolemy.

Once the shell of your model is built, the body of the model (the algorithm) will have
to be written. To do this, you will need an understanding of the Agilent Ptolemy
Preprocessor Language, described in Chapter 14, Writing Component Models.

Note In versions prior to ADS 2001, there was an option of building Signal
Processing models using the graphical user interface (GUI) method. However, due to
the limitations of this method in building Signal Processing models, this option has
been dropped for Signal Processing models (it is still available for Analog/RF System
models). Refer to the section “Advanced Model Building Functions” on page 13-1 to
see some of some of the limitations with the dropped GUI method. None of the listed
capabilities were available in the GUI method.

User-defined models (and their associated files) that you created with the older GUI
method are still usable with the current command-line method. Follow the
instructions in this chapter to learn how to use these models (for example, moving
files to the proper directories, etc.).

Note Refer to the Glossary for unique UC Berkeley Ptolemy terms, such as star and
particle.

Advanced Model Building Functions

This chapter describes processes that provide you with the full features available in
Agilent Ptolemy models. This functionality, includes:

* Inheritance of model inputs, outputs, states, data, and methods from another
star. These inherited properties are important for code reuse, increased code
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robustness, increased code quality, decreased code size, and reduced code
testing requirements.

* Model states that use the enumerated type. These enumerated states are
important for defining explicit state options at the design environment level.

* Model states that are hidden from the design environment. These hidden states
are useful for local model parameter definitions.

* More detailed and flexible auto generation of AEL, bitmaps, and symbols
required at the design environment level.

* Models that set the vendor field (in hpeesoflang).

This chapter first walks you through developing a simple model and then provides
more detail on certain topics.

Prerequisites to Model Development

Your UNIX or Windows system must have the appropriate C++ development software
installed, as follows:

Table 13-1. Compiler Requirements for Model Development

Operating System Compiler

HP-UX 10.2x, 11 HP aC++ Version A.01.23 or higher and
HP C/ANSI C Compiler A.10.32 or higherl

Sun0S 5.7, or 5.8 SPARC compiler Forte Workshop 6 or C++ Version 5.x or higher 2
Solaris 7.0, or 8.0

Windows 98, NT 4.0, or 2000 Microsoft Visual C++, Professional Edition, Version 6 2

IBM AlX 4.2 or higher VisualAge C++ for AIX Version 5.0 2

1The C compiler is needed in cases where external C files or routines will be compiled and linked in
to the C++ Agilent Ptolemy model.

2 An ANSI C Compiler is included with this compiler and will work for both the Agilent Ptolemy and
the ADS Analog Model Development Kit.

Note The default environment size under Windows 98 only (not NT/2000) is
insufficient for building models. There are two ways you can fix this problem:

Method 1: Increase memory by adding the following line to your C:\CONFIG.SYS file
and rebooting:
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SHELL=C:\COMMAND.COM /E:4096 /P

Method 2: First right-click on the MS-DOS icon and then choose Properties. Next,
choose the Memory tab and type or click 4069 in the Initial Environment box. Finally,
click OK.

Note that although the Visual C++ installation prompts you to create certain
environment variables (in the 'Setup Environment Variables' dialog box), the default
setting of the Register Environment Variables' option is off. You must select this
option to create the variables. If Visual C++ was previously installed without setting
the variables, you must reinstall and select the aforementioned option.

The variables are written to the file VCVARS32.BAT in your VC6 bin directory.

Creating a Simple Model Library

Set the HPEESOF_DIR and PATH Environment Variables

You should first set the HPEESOF_DIR environment variable to wherever you've
installed ADS.

Second, add the $HPEESOF_DIR/bin, or %HPEESOF_DIR%\bin under Windows,
directory to your PATH.

Under Windows, you can simply set these variables from an MS-DOS window with
the Set command.

Set Up the Area to Build Models

A model build area can contain any number of libraries and star libraries. Each star
library can contain many stars. In your home directory, we’ll create a model build
area with a single star library for this tutorial:

In UNIX:

cd
hpeesofmb

and in Windows:
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cd c:\users\default
hpeesofmb

The hpeesofmb command will create a directory called hptolemy and copy some files
there. Inside the hptolemy directory are two files, makefile and make-defs which you
shouldn’t edit. Only one directory, src, exists at the beginning, which is where the
code for your libraries and stars will go.

Note On Windows systems only, ADS mounts $HPEESOF_DIR\tools\bin to /bin as
part of the Apeesofmb and hpeesofmake commands. If you have already mounted /bin
to another directory, you should be aware that ADS will unmount it. If you do not
have a /bin directory, a warning message may be displayed regarding the absence of
the /bin directory. This message can be ignored, however.

Note Ifyou have a work area that was generated using the ADS Model Builder prior
to ADS 2002 release, you must clean-up and update your makefiles. To do this, do the
following:

cd hptolemy
rm mk/*
cd ..

hpeesofmb -clean

The src directory can be arbitrarily deep so that you can keep many star libraries and
regular libraries in one model build area. In this example, we’ll create a star library
directly in srec. A later section explains how to create more complicated src area.

Write a Model

We provide the code for many of our stars for you to look at in the directory
doc/sp_items in the ADS installation. We'll copy the Sin star into the src area and edit
it for our purposes:

In UNIX:

cd hptolemy/src
cp $HPEESOF_DIR/doc/sp_items/SDFSin.pl SDFMySin.pl
vi SDFMySin.pl
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and in Windows:

cd hptolemy\src
copy %2HPEESOF_DIR%\doc\sp_items\SDFSin.pl SDFMySin.pl
edit SDFMySin.pl

Change the name of the star. Find the line which says name {Sin/, and change it to
name {MySin}. Change the code if you wish. For example, the star could compute
sin()+1 by changing the go routine to:

output%0 << sin (double(input%0))+ 1;

Change the location of the star. Find the line which says location {Numeric Math} and
change it to location {My Stars}.

Star files are named according to the convention <Domain><Name>.pl. The MySin
star is in the SDF domain. The pl extension stands for Ptolemy Language.

Edit the make-defs

Every directory under src must contain a make-defs. For this simple star, the default
make-defs is almost correct. You need to find the line which says PL,_SRCS= and
change it to

PL_SRCS = SDFMySin.pl

If you are using the SPARC Compiler version 5 or higher, you will also need to
uncomment the indicated line in the make-defs. If you're not sure which version of
the SPARC Compiler you are using, type CC -V.

Build the Shared Library

To build a shared library and install it into your build area, you need to run
hpeesofmake. Run this command from the hptolemy directory:

In UNIX:

cd ~/hptolemy
hpeesofmake “debug=1”

and in Windows:

cd c:\users\default\hptolemy (where c: is the drive letter where you have ADS
installed)
hpeesofmake “debug=1"
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Note The install target of hpeesofmake has been changed in ADS 2002. To build a
shared library, you no longer need to use the install target.

Note Due to changes in ADS 2002, if you have any shared libraries that were
generated using the hpeesofmake install command prior to the ADS 2002 release
(such as ADS 2001 or ADS 1.5), you may have to regenerate them using the ADS
2002 hpeesofmake command. To do this, refer to “Set Up the Area to Build Models”
on page 13-3, for details on how to run hpeesofmake -clean. If you fail to do this, your
older shared libraries will not work in ADS 2002.

You must use hpeesofmake (which is actually GNU make) for all make commands,
never make or nmake. The only exception is if you're developing in Windows with the
Cygnus GNU-WIN32 tools. Refer to the later section “Platform-Specific Issues” on
page 13-12 for more details.

Building the shared library will take some time. If you do a listing of the hptolemy
directory, you’ll see two new directories, lib.arch and obj.arch, where arch is an
abbreviation for your architecture.

To keep your src directory tidy, all compiled files are placed in an equivalent area in
obj.arch. The libraries that will be needed by the simulator are placed in lib.arch.
Since architecture dependent files are placed in different directories, you can do
development for multiple architectures in one model building area.

The “debug=1" option above causes the library to be built as code that can be
debugged. It is built as optimized code without it. You can also add the line debug=1 to
your make-defs to always build code that can be debugged.

Build the AEL, Default Bitmaps, and Default Symbols

To use your star in the Signal Processing schematic, you must generate the
associated AEL, bitmap, and symbol. Create them with the following commands.
These should be run from the hptolemy directory:

hpeesofmake ael
hpeesofmake bitmap
hpeesofmake symbol
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The AEL code describes your model to the ADS design environment. You must
regenerate AEL whenever you change an exterior aspect of your model, for example,
its name, ports, parameters, or location.

Note Due to changes in ADS 2001, if you have any AEL files that were generated
using hpeesofmake ael command prior to the ADS 2001 release (such as ADS 1.5 or
ADS 1.3), you must regenerate them using the ADS 2001 hpeesofmake ael command.
If you do not do this, your older models will not work with ADS 2001.

The bitmap is the picture of your model which appears in the palette on the left side
of the design environment. The symbol is the picture which actually gets placed in
the schematic.

The bitmaps and symbols created by the make system are ordinary but serve as
templates for you to edit further. They will be the right size and have the appropriate
number and type of pins. Symbols can be edited from ADS. Open them as you would
any other schematic. Bitmaps can be edited with the bitmap program in UNIX or the
Paint program in Windows.

The build system will not overwrite existing symbols or bitmaps; it will only create
symbols and bitmaps for the stars which you have added since the last time you ran
it. If you want to force the creation of a particular bitmap or symbol, manually
remove the appropriate file.

Simulate Your Model

Before starting ADS, set the HPTOLEMY_MODEL_PATH environment variable to
point to your model build area. The simulator uses this variable to find your libraries,
symbols, bitmaps, and AEL. The variable is a colon delimited path in UNIX and a
semicolon delimited path in Windows.

For this example, set it to $SHOME/hptolemy in UNIX or c:\users\default\hptolemy in
Windows. Now start ADS. You'll see your star on the palette on the left under
wherever you set the location field above.

You can rebuild your library while ADS is running if you first choose Simulate > Stop
and Release Simulator.
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Sharing Your Stars

Other users can simulate designs with your models by adding your directory to their
HPTOLEMY_MODEL_PATH. If you are not on the same network, you can send them
the entire contents of your model build area, minus the src and mk directories if you
wish to protect those directories. You can also send them the .pl files and the
make-defs and ask them to recompile your models.

The src Directory and make-defs in More Detail

Variables

As mentioned above, the src directory can have arbitrary depth. The build system
will recurse over your entire tree. Each directory must have a make-defs file; the
makefile is built automatically from this file.

Directories containing other directories should define the DIRS variable in their
make-defs to a space-separated list of the directories to recurse into. For example, if
your src directory contains two directories, foo and bar, the contents of the make-defs
in the src directory would be:

DIRS = foo bar

Two kinds of libraries can be built by the build system: star libraries and
conventional libraries. To build a star library, set the PL._SRCS variable to a
space-separated list of your .pl files and the STAR_MK variable to the name of the
star library. For example, part of a make-defs that builds a star library with two
models might be:

STAR_MK = myfilter
PL_SRCS = filterl.pl filter2.pl

To build a conventional library, set the SRCS variable to a space-separated list of
your .c, .cc, and .cxx files and the PTLIB variable to the name of the library. The
STAR_MK and PTLIB variables are mutually exclusive.

You can set other make-defs variables in order to control compilation and linking.
Append compilation flags to the variables CPPFLAGS, CFLAGS, and CXXFLAGS to
affect preprocessing, C compilation, and C++ compilation. Since all stars are written
in C++, use the CXXFLAGS to control star flags. For example,
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CPPFLAGS += -DFAST
CFLAGS +=-04
CXXFLAGS +=-04

Add to the include path by adding directories to the variable INCLUDEPATH, a
space-separated list. Additional objects can be linked into your library by appending
to the OBJS variable. Additional sources can be compiled and linked in by appending
to the SRCS variable. For example,

INCLUDEPATH += /libtree/headers

SRCS += myutilties.c moreutilities.cxx

OBJS += /libtree/objs/tree$(OBJSUFFIX)

# OBJSUFFIX will expand to .0 on Unix and .obj on Windows

Linking is manipulated with the variables LIBSPATH, LIBS, and LIBSOPTION.
Similar to INCLUDEPATH, LIBSPATH is a space-separated list of directories where
the linker should look for libraries. LIBS is a list of the libraries themselves.
LIBSOPTION allows any arbitrary flags to be added to the link. For example,

LIBSPATH += /libtree/libs
LIBS +=treem
# The tree library and the math library are linked in by the above.

Because the make system will automatically set appropriate values for most of the
variables, you should almost always append to the variable with += rather than
setting it with =.

Dependencies

You must tell the make system on which ADS libraries your library depends. This
will cause the make system to add the appropriate directories to your include path. In
addition, the library will be built in such a way that the dependent libraries are
loaded along with your library.

To use any of the ADS headers in hptolemy/src, you must set a particular make-defs
variable to 1. Each directory has a corresponding variable according to the table:

Table 13-2. Dependencies

Directory make-defs Variable
hptolemy-kernel/compat (always included)
hptolemy-kernel/kernel KERNEL
numeric/kernel SDFKERNEL
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Table 13-2. Dependencies

Directory make-defs Variable
numeric/base/stars SDFSTARS
numeric/dsp/stars SDFDSP
numeric/libptdsp PTDSP
timed/kernel TSDFKERNEL
timed/base/stars TSDFSTARS
matrix/base/stars SDFMATRIX
fixpt-analysis/base/stars SDFFIX
controls-displays/tcltk/ptklib PTK
controls-displays/tcltk/stars SDFTK
instruments/stars SDFINSTKERNEL

At a minimum, you will need to set the variable corresponding to the domain for
which you are building stars: SDFKERNEL for SDF and TSDFKERNEL for TSDF.
Dependencies are transitive so if you depend on A, and A depends on B, the make
system will require you to depend on both A and B.

When the SDFINSTKERNEL is set in the make-defs file (SDFINSTKERNEL=1), it
will include the SDFInstrument.h header file with the other dependencies at
compilation.

ADS provides the code for many Agilent Ptolemy stars in the doc/sp_items directory.
These are the stars for which you can click the C++ Code button in the online Signal
Processing Components manual. To derive a star of your own from one of these, find

the header of the star in one of the above locations, and set the appropriate variable.

Debugging Your Model

Debugging a program that loads dynamic libraries at run time is a more difficult task
than debugging a conventional program. The symbol tables for the dynamic libraries
must be manually loaded before the debugger can set break points in those libraries.
You must have compiled your code with the debug flag on as explained earlier.

Before you start debugging, you’ll need to be able to run simulations from the
command line, outside of ADS.
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Running Simulations from the Command Line

Each time you simulate from ADS, a file called netlist.log is created in your project
directory. This file completely describes your schematic and can be passed to the
simulator on the command line. Note that the format of this file is not guaranteed to
remain the same in future versions of ADS.

Before you can execute the simulator, an environment variable must be set so that
the simulator can find all its shared libraries. When you ran hpeesofmb above, a
script called mbsetvars was created in the bin directory. Under UNIX, you will have
to evaluate its output to set the appropriate variable. Assuming you’re building
models in your home directory, type:

cd ~/hptolemy/bin
eval ‘./mbsetvars’

Under Windows, the script is a .bat file so you can run it directly:

cd c:\users\default\hptolemy\bin
mbsetvars

The mbsetvars script has the path to your model build area encoded in it, so you
should not use the script from a different model build area. If you move the model
build area, regenerate the script by removing it and then running the hpeesofmb
command again.

Now you should be able to run your simulation from the command line by moving to
your project’s data subdirectory and running:

hpeesofsim ../netlist.log

Debugging Under Windows

After running the mbsetvars script to set the needed variables, start the Visual C++
Debugger from the command line with the msdev command. If you start it from the
Start menu it will not work because it will not inherit the environment variables set
by mbsetvars.

First, choose File > Open to open the bin\hpeesofsim.exe file from the ADS
installation directory.

Second, choose Project > Settings, and click on the Debug tab. In the General category,
set the Working directory to the data directory of your project directory and the
Program arguments to ..\netlist.log. The Executable for debug session will already be
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set to hpeesofsim.exe. Then, in the Additional DLLs category, load the DLLs that you
built from your model library’s lib.win32 directory.

Now you will be able to load your code, set break points in it, and run simulations
from within the Visual C++ debugger.

Debugging Under UNIX

After evaluating the output of the mbsetvars script to set the needed variables, start
the debugger on the bin/hpeesofsim binary. On HP-UX, use the Wildebeest debugger,
wdb, v1.1 or higher. (Wildebeest may be freely downloaded from
http://devresource.hp.com, then search for Wildebeest.) On Solaris and AIX, use the
regular debugger, dbx.

The Wildebeest debugger has the ability to load the symbol tables from your shared
libraries with the shared command. After loading the libraries, you will be able to set
breakpoints in your code. Run the simulator in your project’s data directory with an
argument of ../netlist.log.

With dbx, and if symbol table loading is not working under wdb, set a breakpoint on
the hptolemy_simulate function, and run the program as described above. After this
break point is reached, all libraries (including your own) will be loaded, and you will
be able to set breakpoints in your code and continue execution.

Platform-Specific Issues

HP-UX 10.x

aCC requires parentheses when the left-hand side of an equality contains the %
operator. For example, the code:

output%0 = input%0
must be written like this:

(output%0) = input%0

HP-UX 11.x

If you are compiling under HP-UX 11.x, you may get an error (future) message
regarding the redefinition of a macro. You can safely ignore these messages since they
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do not affect the quality of your compiled code. The following is an example of this
type of error message:

Error (future) 129: “/usr/include/math.h”, line 188 # Redefinition of macro
‘INFINITY’ differs from previous definition at ...

Windows

Calls to casting operators to non-built in types, like Complex and Fix, don’t work in
VC++ 5. The compiler thinks that a constructor is being called for the type to be
casted, even though one doesn’t exist. Calling the casting operator explicitly will
work. Code which tries to cast in either of these ways:

Complex templ = Complex(input1%0);
Fix temp2 = (Fix)input2%0;
must be written like this:

Complex temp1 = (input1%0).operator Complex();
Fix temp2 = (input2%0).operator Fix();

The build system under Windows uses the Cygnus GNU-Win32 tools internally. You
may build with a normal MS-DOS shell, the MKS toolkit, or the Cygnus GNU-Win32
tools. If you use either of the first two, you should use hpeesofmake as the
documentation describes. But if (and only if) you have the Cygnus tools installed and
are building under the Cygnus bash shell, you should use the make command to

build.

AIX

If you are compiling under AIX, you may get a warning message regarding duplicate
symbols. You can safely ignore these messages. These messages are the result of a
known bug in the Visual Age C++ compiler. Here are some examples of these warning
messages:

¢ 1d: 0711-224 WARNING: Duplicate symbol: __cdtors
¢ 1d: 0711-224 WARNING: Duplicate symbol: .Star::begin()
¢ 1d: 0711-224 WARNING: Duplicate symbol: .DataFlowStar::getDisable()

Platform-Specific Issues  13-13



Building Signal Processing Models

13-14 Platform-Specific Issues



Chapter 14: Writing Component Models

As described in Chapter 13, Building Signal Processing Models, you can build your
own component models to supplement the large libraries included with Agilent
Ptolemy. This chapter describes how to write the body of these models, and includes:

“Writing C++ Code for Stars” on page 14-21
“Writing Timed Components” on page 14-33
“Using the Agilent Ptolemy Preprocessor Language” on page 14-1

Using the Agilent Ptolemy Preprocessor Language

Since the stars in Agilent Ptolemy were designed to be as generic as possible, many
complicated functions can be realized by a galaxy. Even so, no star library can
possibly be complete. You may have to design your own stars. The Agilent Ptolemy
preprocessor language makes this easier.

The Agilent Ptolemy preprocessor was created to make it easier to write and
document star class definitions to run under Agilent Ptolemy. Instead of writing all
the class definitions and initialization code required for an Agilent Ptolemy star, the
user can concentrate on writing the action code for a star and let the preprocessor
generate the standard initialization code for portholes, states, etc. The preprocessor
generates standard C++ code, divided into three files:

¢ A header file with a .h extension.
¢ An implementation file with a .cc extension.

¢ An xml file with a .pl.xIm extension for auto-documentation generation.

Rectangular Pulse Star Example

To make things clear, let’s start with an example: a rectangular pulse star in the file
SDFRect.pl. See Figure 14-1. This is the code for an actual star. The code for more
examples can be found in $HPEESOF_DIR/doc/sp_items for UNIX systems or
%HPEESOF_DIR/doc/sp_items for PC platforms.

From the file SDFRect.pl, the model building process creates the files SDFRect.h,
SDFRect.cc, and SDFRect.pl.xml. The names are determined by concatenating the
domain and name fields. These files define a class named SDFRect. The example code
is as follows:
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defstar {

name { Rect }

domain { SDF }

desc { Rectangular pulse output }

explanation {
Generate a rectangular pulse of height "height" (default 1.0).
and width "width" (default 8). If "period" is greater than zero,
then the pulse is repeated with the given period.

}
version { @(#) $ $Revision: 1.18 $ $Date: 2001/03/23 22:19:18 $ }
ucb-version {@(#)SDFRect.pl  2.10 6/25/96}
author {your_name}
copyright {
Copyright (c) Agilent Technologies 2001
Copyright (c) 1990-1995 The Regents of the University of California.
All rights reserved.
See the file $ROOT/uch-copyright for copyright notice,
limitation of liability, and disclaimer of warranty provisions.

vendor { AgilentEEsof }
location { Numeric, Sources }

output {
name { output }
type { float }

}

defstate {
name { Height }
type { float }

default { 1.0 }

desc { height of rectangular pulse }
}
defstate {

name { Width }

type {int}

default {8}

desc { width of rectangular pulse }
}
defstate {

name { Period }

type {int}

default {0}

desc { if greater than zero, repetition period of pulse stream

defstate {
name { Count }
type {int}
default {0}
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desc { Internal counting state. }
attributes { A_NONSETTABLE|A_NONCONSTANT }

}
setup {
Count =0;
}
go {
double t = 0.0;
if (int(Count) < int(Width)) t = Height;
output%o0 << t;
Count = int(Count) + 1;
if (int(Period) > 0 && int(Count) >= int(Period)) Count = 0;
}

Figure 14-1. SDFRect.pl File

Only one type of declaration may appear at the top level of an Agilent Ptolemy
language file: a defstar, used to define a star. The defstar section is itself composed of
subitems that define various attributes of the star. All subitems are of the form:

keyword {body}

where the body may itself be composed of sub-subitems, or may be C++ code (in which
case the Agilent Ptolemy language preprocessor checks it only for balanced curly
braces). Note that the keywords are not reserved words. They may also be used as
identifiers in the body.

Items Defining a defstar

Table 14-1 provides an alphabetical list of the items that can appear in a defstar
directive, including a summary of directives.

Table 14-1. Summary of Items Used to Define a Star

Keyword Summary Required  Page
acknowledge | The names of other contributors to the star No 14-7
attributes Attributes for the star No 14-8
attributes Attributes for PortHoles No 14-8
attributes Attributes for the States No 14-8
author* The name(s) of the author(s) No 14-7
begin C++ code to execute at start time, after the schedule setup No 14-17
* Indicates a minimum set of the most useful items.
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Table 14-1. Summary of Items Used to Define a Star (continued)

Keyword Summary Required  Page
ccinclude Specify other files to include in the .cc file No 14-19
code C++ code to include in the .cc file outside the class definition |No 14-19
conscalls Define constructor calls for members of the star class No 14-16
constructor C++ code to include in the constructor for the star No 14-16
copyright Copyright information to include in the generated code No 14-9
derived Alternate form of derivedfrom No 14-6
derivedfrom The base class, which may also be a star No 14-6
desc Alternate form of descriptor No 14-7
descriptor* A short summary of the functionality of star No 14-7
destructor C++ code to include in the destructor for the star No 14-17
domain* The domain and the prefix of the name of a class Yes 14-6
explanation Full documentation optionally using troff, eqn, and tbl formats | No 14-10
go* C++ code to execute when the star fires No 14-18
header C++ code to include in the .h file, before the class definition No 14-19
hinclude Specify other files to include in the . A file No 14-19
htmldoc Full documentation optionally using troff, eqn, and tbl formats | No 14-10
inmulti Define a set of inputs No 14-15
input* Define an input to the star No 14-15
location Component library (palette) name where user will find the star | No 14-9
method Define a member function for the star class No 14-19
name* The name of the star and the root of the name of the class Yes 14-6
outmulti Define a set of outputs No 14-15
output* Define an output from the star No 14-15
private Define private data members of the star class No 14-18
protected Defined protected data members of the star class No 14-18
public Define public data members of the star class No 14-18
setup* C++ code to execute at start time, before the scheduler setup |No 14-17
state Define a state or parameter No 14-10
* Indicates a minimum set of the most useful items.
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Table 14-1. Summary of Items Used to Define a Star (continued)

Keyword Summary Required  Page

version Version number and date No 14-7

wrapup* C++ code to invoke at the end of a run (if no error occurred) No 14-18

vendor Name of company that authors component. All shipped with No 14-20
Agilent Ptolemy are marked HPEEsof

* Indicates a minimum set of the most useful items.

An alternate form for the state directive is defstate. The subitems of the state
directive are summarized in Table 14-2, together with subitems of other directives.

Table 14-2. Directive Subitem

Items Subitems and Descriptions Required Page
inmulti, input name (Name of port or group of ports) Yes 14-15
type (Data type of input and output particles) No
descriptor (Summary of function of the input) No
numtokens (Number of tokens consumed by the No
port; useful only for dataflow domains)
method, virtual name (Name of the method) Yes 14-19
method, inline access (Private, protected, or public) No
method, pure virtual | arglist (Arguments to the method) No
method, type (Return type of the method) No
inline virtual method | code (C++ code defining the method) If not pure
outmulti, output name (Name of port or group of ports) Yes 14-15
type (Data type of output particles) No
descriptor (Summary of the functions of output) No
numtokens (Number of tokens produced by port; No
useful only for dataflow designs)
state name (Name of the state variable) Yes 14-10
type (Data type of the state variable) Yes
default (Default initial value; always a string) No
descriptor (Summary of function of state) No
attributes (State attributes for simulator) No
units (Type of dimensional units associated with No
state)
enumlist (list of enumeration options) No
enumlabels (list of alternate names for enumeration No
options)
extensions (list of file extensions for a filename state - No

default is txt)
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In the text that follows, items are listed in the order in which they typically appear in
a star definition (although they can appear in any order). In this list, syntax and
descriptive notes are also included.

name
Required item. Syntax:
name {identifier}

Together with the domain, this item provides the name of the class to be defined and
the names of the output files. Case is important in the identifier.

domain
Required item, specifying the domain, such as SDF or TSDF. Syntax:
domain {identifier}

where identifier specifies the domain (again, case is important).

derivedfrom
This optional item indicates that the star is derived from another star. Syntax:
derivedfrom {identifier}

where identifier specifies the base star. The .4 file for the base class is automatically
included in the output .A file, assuming it can be located (you may need to add -I
options to the makefile).

For example, the LMS star in the SDF domain is derived from the FIR star. The full
name of the base class is SDFFIR, but the derivedfrom statement allows you to say
either

derivedfrom {FIR}
or
derivedfrom {SDFFIR}

The derivedfrom statement may also be written derivedFrom or derived. Note that it
is not possible to derive stars across domains.
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descriptor

This optional item defines a short description of the class. This description is
displayed by the Advanced Design System design environment for this star in the
Library list. It has the syntax

descriptor {text}

where text is simply a section of text that will become the short descriptor of the star.
You can also write desc instead of descriptor. A principal use of the short descriptor is
to get on-screen help. The following are legal descriptors:

desc {A one line descriptor.}
or

desc {A multi-line descriptor. The same line breaks and spacing will be used when
the descriptor is displayed on the screen.}

By convention, in these descriptors, references to the names of states, inputs, and
outputs should be enclosed in quotation marks. If the descriptor seems to get long,
augment it with the explanation or htmldoc directive, explained below. However, it
should be long enough so that it is sufficient to explain the function of the star.
version

This optional item contains entries as follows.

version {@#) $Source: <dir>/my_model.pl $ $Revision: number $ $Date:
YR/MO/DA $}

where the <dir> is the source code control directory, the number is a version number,
and the YR/MO/DA is the version date.
author
This optional entry identifies the author or authors of the star. Syntax:
author {authorl, author2 and author3}

Any set of characters between the braces will be interpreted as a list of author names.

acknowledge

This optional entry attaches an acknowledgment section to the documentation.
Syntax:
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acknowledge {arbitrary single line of text}

attributes (for Stars)

This optional entry defines star attributes with syntax:
attributes {attribute | attribute | ...}

where attributes are separated by the symbol I.

The only possible attribute is:

S_HIDDEN The star is invisible in the design environment. This is typically used
for stars that are used only as base stars for other stars.

By default, a star is visible.

attributes (for PortHoles)

This optional entry defines PortHole attributes with syntax:
attributes {attribute | attribute | ...}

where attributes are separated by the symbol |I.

Possible attributes are:
P_HIDDEN The port is invisible in the design environment.
P_VISIBLE The port is visible in the design environment.

P_OPTIONAL The port can be left unconnected. Note, the star code should not
read data if the port is not connected. To test whether a port is connected or not,
call the function Port_Name. far(), where Port_Name is the name of the port. If the
function returns a NULL pointer, the port is not connected, otherwise it is
connected.

P_REQUIRED The port is required to be connected.
By default, all PortHoles are visible and require a connection. Note that the
simulator will connect BlackHole models to any unconnected output PortHoles. The
BlackHole model itself is hidden.
attributes (for States)
This optional entry defines state attributes with syntax:

attributes {attribute | attribute | ...}
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where attributes are separated by the symbol I.

Possible attributes are:
A_CONSTANT The state is constant during execution of the star.
A_NONCONSTANT The state can change during the execution of the star.
A_SETTABLE The state is visible in the design environment.
A_NONSETTABLE The state is invisible in the design environment.
A_SWEEPABLE The state can be optimized or swept.
A_NONSWEEPABLE The state can neither be optimized nor swept.
A_SCHEMDISPLAY The state is visible and editable on the ADS schematic.

A_NOSCHEMDISPLAY The state is visible and editable only in the Edit
Component Parameter dialog box.

By default a State is constant, settable, sweepable, and displayed on the schematic.

copyright

This optional entry attaches a copyright notice to the .A, .cc, and . files. Syntax:
copyright {copyright information}

For example, we use the following:
copyright {Copyright (c) Agilent Technologies 2000. All rights reserved.}

The copyright can span multiple lines, just like a descriptor.

location

This optional item is the name of the schematic library in which the user will find the
star. Syntax:

location {<main libraryname,>libraryname}

where libraryname is the location of the star in the Advanced Design System design
environment Signal Processing schematic and in the ADS online help under Manuals
> Signal Processing components. The optional main libraryname is a super location
followed by a comma. For example:

location {Signal Processing Library}
location {Numeric, Sources}
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No more than two levels is allowed in the hierarchy.

explanation
This optional item is used to give a longer explanation of the star’s function. Syntax:

explanation {
body
}

htmldoc
This optional item is used to give a longer explanation of the star’s function. Syntax:

explanation {
body
}

State

This optional item is used to define a state or parameter. The following is an example
of a state definition:

state {

name {gain}

type {int}

default {1.0}

units {UNITLESS_UNIT}

desc {output gain}

attributes {A_CONSTANT | A_SETTABLE}
}

The following ten types of subitems may appear in a state definition, in any order:
name, type, default, desc, units, enum, enumlist, enumlabel, extensions, attributes.

* The name field (required) is the name of the state.

* The type field (required) is its type, which may be one of int, float, string,
complex, fix, intarray, floatarray, complexarray, precision, stringarray, filename,
enum, query, or boolean. Case is ignored for the type argument.
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* The default field (optional) specifies the default initial value of the state. Its
argument is either a string (enclosed in quotation marks) or a numeric value.
The preceding entry could equivalently have been written:

default { "1.0"}

Furthermore, if a particularly long default is required, as for example when
initializing an array, the string can be broken into a sequence of strings. The
following example shows the default for a ComplexArray.

default {

"(-.040609,0.0) (-.001628,0.0) (.17853,0.0) (.37665,0.0)"
"(.37665,0.0) (.17853,0.0) (-.001628,0.0) (-.040609,0.0)"
}

For complex states, the syntax for the default value is (real, imag) where real
and imag evaluate to integers or floats.

The precision state is used to give the precision of fixed-point values. These
values may be other states or may be internal to the star. The default can be
specified in either of two ways:

Method 1 : As a string like “3.2”, or more generally “m.n”, where m is the number
of integer bits (to the left of the binary point) and n is the number of fractional
bits (to the right of the binary point). Thus length is m+n.

Method 2: A string like “24/32” which means 24 fraction bits from a total length
of 32. This format is often more convenient because the word length often
remains constant while the number of fraction bits changes with the
normalization being used.

In both cases, the sign bit counts as one of the integer bits, so this number must
be at least one.

For enum states, the default value may only be one of the values listed in the
enumlist field, in quotes (“value”).

For filename states, the default value is the name of a file.

Units, such as MHz, msec, etc., can also be used in the default field,

e.g., {“3 msec”}. However, this is not recommended since the value will not be
displayed properly on the Schematic when the user changes the Units Scale
Factors from the Options > Preferences > Units/Scale tab.
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Expressions can also be used to set the default value. For example, the default
field of a float state can be {“sin(0.3)”} or the default field of a complex state can
be {“polar(3.2, 1.13)”}.

An example of the default field for each type is shown in Table 14-3.

The desc (or descriptor) field, which is optional but highly recommended,
attaches a descriptor to the state. The same formatting options are available as
with the star descriptor.

The attributes field (optional) specifies state attributes. At present, four
attributes are defined for all states: A_ CONSTANT, A_SETTABLE,
A_SWEEPABLE, and A_SCHEMDISPLAY (along with their complements
A_NONCONSTANT, A_NONSETTABLE, A_NONSWEEPABLE, and
A_NOSCHEMDISPLAY). If a state has the A_ CONSTANT attribute, then its
value is not modified by the run-time code in the star (it is up to you as the star
writer to ensure that this condition is satisfied).

Table 14-3. Default Fields

Type Example Default

int default {3}

float default {3}

fix default {1.25}
complex default {*(1.25, 2.5)"}
string default {“string value”}
precision default {24/32"}

or equivalently
default {“8.24"}

enum default {“value 1"}

filename default {*/user/abc/xyz/Imn.txt"}

intarray default {1, 2, 4, 7, 9}

floatarray default {1.25, 3.50, 6.75}

complexarray | default {*(1.25, 2.5) (2.4. -2.3) (-1.2, -2.2)"}
stringarray default {“Buttonl1” “Button 2"}

States with the A_ NONCONSTANT attribute may change when the star is run.
If a state has the A_SETTABLE attribute, then user interfaces will enable the
user to enter values for this state. States without this attribute are not
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presented to the user; such states always start with their default values as the
initial value.

If a state has the A_SWEEPABLE attribute, its value can be swept and/or
optimized using the appropriate simulation controllers. On the other hand, the
A_NONSWEEPABLE attribute does not allow sweeping and/or optimizing the
state’s value.

The A_SCHEMDISPLAY attribute is only used for states that are
A_SETTABLE. If a state has the A_ SCHEMDISPLAY and A_ SETTABLE
attributes set, the state will be shown on the ADS schematic. If a state has the
A_NOSCHEMDISPLAY and A_SETTABLE attributes set, the state will only be
shown in the Edit Component Parameter dialog box.

Note that of all the attributes only A_SCHEMDISPLAY and
A_NOSCHEMDISPLAY can be modified by the user for a specific instance of a
component. This is done in the Edit Component Parameters dialog box by
setting the “display parameter on schematic” flag appropriately.

If no attributes are specified, the default is
A_CONSTANTIA_SETTABLE |A_SCHEMDISPLAY | A_SWEEPABLE. Thus,
in the above example, the attributes directive is unnecessary.

The units field (optional) identifies the set of dimensional scale factors to be
associated with this state at the schematic level in Advanced Design System.
By default, the value of this field is UNITLESS_UNIT, which results in no scale
factor association at the schematic level. Other unit options are shown in
Table 14-4.

Table 14-4. Unit Options

Option Function

FREQUENCY_UNIT Results in use of frequency unit scale factors at the
schematic level (GHz, MHz, etc.). The state in the code will
receive a value in terms of Hz.

TIME_UNIT Results in use of time unit scale factors at the schematic
level (usec, msec, etc.). The state in the code will receive a
value in terms of sec.

ANGLE_UNIT Results in use of degree angle units at the schematic level.
The state in the code will receive a value in terms of
degrees.

POWER_UNIT Results in use of power scale and conversion factors at the

schematic level (W, mW, dBm, dBW, etc.). The state in the
code will receive a value in terms of W.
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Table 14-4. Unit Options (continued)

Option Function

DISTANCE_UNIT Results in use of distance unit scale factors at the schematic
level (m, km, mile, etc.). The state in the code will reveal a
value in terms of m.

LENGTH_UNIT Results in use of length scale and conversion factors at the
schematic level (m, mm, cm, in, ft, etc.). The state in the
code will receive a value in terms of m.

RESISTANCE_UNIT Results in use of resistance scale factors at the schematic
level (Ohms, KOhms, MOhms, etc.). The state in the code
will receive a value in terms of Ohms.

CAPACITANCE_UNIT Results in use of capacitance scale factors at the schematic
level (F, uF, pF, etc.). The state in the code will receive a
value in terms of F.

INDUCTANCE_UNIT Results in use of inductance scale factors at the schematic
level (H, mH, uH, etc.). The state in the code will receive a
value in terms of H.

¢ The enumlist field is required when the state type is enum. The enumlist field is
a comma separated list of strings.

enumlist {value 1, value 2, value 3}

Quotes around strings are optional. Spaces and other non-alphanumeric
characters can be used. However, when referencing an enum value in the
code for the star, all non-alphanumeric characters must be replaced with an
underbar (_). For example, “value 1” should be referenced as “value_1”.

* The enumlabels field is optional and available for use only when the state type
is enum. The enumlabels field contains name abbreviations for each enumlist
value. The alternate names are for use only at the schematic level in Advanced
Design System as a short mnemonic for the full enumeration value.

enumlabels {v1, v2, v3}
The label v1 is used only as an abbreviation for value 1.

Two very commonly used enums are predefined: query with enumlist {NO, YES}
and boolean with enumlist {FALSE, TRUE}. Below is an example showing their
use:

state {

name {periodic}
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type {query}
default {YES}

}

* The filename state is just like a string state, except that the dialog box for a
filename state can bring up a file browser for file selection. The extensions field
can be specified for a filename state to list the valid extensions for the selected
file. From a pull-down menu in the dialog box, you can select the files with
certain extensions from the extensions field to be listed in the browser. If
extensions is not specified or is empty, the default extension used to list files in
the browser is #xt.

Mechanisms for accessing and updating states in C++ methods associated with a star
are explained in the following list of keywords and in the sections “States” on
page 14-28 and “Array States” on page 14-30.

input, output, inmulti, outmulti

These optional items are used to define a porthole, which may be an input, output
porthole or an input, output multiporthole. Bidirectional ports are not supported.
Like state, it contains subitems. The following is an example:

input {
name {signalln}
type {complex}
numtokens {2}
desc {A complex input that consumes 2 input particles.}

}
Here, name specifies the porthole name. This is a required item.

The keyword type specifies the particle type. The scalar types are int, float, fix, HPfix,
complex, message, or anytype. Again, case does not matter for the type value. The
matrix types are int_matrix, float_matrix, complex_matrix, and fix_matrix. The type
item may be omitted. The default type is anytype. For more information on all of
these, refer to Chapter 15, Data Types for Model Builders. The numtokens keyword
(it may also be written num or numTokens) specifies the number of tokens consumed
or produced on each firing of the star. This only makes sense for certain domains
(SDF and TSDF). In such domains, if the item is omitted, a value of one is used. For
stars where this number depends on the value of a state, it is preferable to leave out
the numtokens specification and to have the setup method set the number of tokens.
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(In the SDF and TSDF domains, this is accomplished with the setSDFParams
method.) This item is used primarily in the SDF and TSDF domains, and is discussed
further in the documentation of these domains.

There is an alternative syntax for the type field of a porthole. This syntax is used in
connection with ANYTYPE to specify a link between the types of two portholes. The
syntax is:

type {= name }

where name is the name of another porthole. This indicates that this porthole
inherits its type from the specified porthole. For example, here is a portion of the
definition of the SDF Fork star:

input {
name{input}
type{ANYTYPE}
}
outmulti {
namef{output}
type{= input}
desc{type is inherited from the input}
}

constructor

This optional item enables the user to specify extra C++ code to be executed in the
constructor for the class. This code will be executed after any automatically generated
code in the constructor that initializes portholes, states, etc. The syntax is:

constructor {body}

where body is a piece of C++ code. It can be of any length. Note that the constructor is
invoked only when the class is first instantiated; actions that must be performed
before every simulation run should appear in the setup or begin methods, not the
constructor.

conscalls

With this optional item, you might have data members in your star that have
constructors requiring arguments. These members would be added by using the
public, private, or protected keywords. If you have such members, the conscalls
keyword provides a mechanism for passing arguments to the constructors of those

14-16 Using the Agilent Ptolemy Preprocessor Language



members. Simply list the names of the members followed by the list of constructor
arguments for each, separated by commas if there is more than one. The syntax is:

conscalls {memberl(arglist), member2(arglist)}

Note that memberl, and member2 should have been previously defined in a public,
private, or protected section. (See the subsequent descriptions of these keywords.)

destructor
This optional item inserts code into the destructor for the class. The syntax is:
destructor {body}

You generally need a destructor only if you allocate memory in the constructor, begin
method, or setup method; termination functions that happen with every run should
appear in the wrapup function. (Wrapup is not called if an error occurs. See
subsequent description of the wrapup keyword.) The optional keyword inline may
appear before destructor. If so, the destructor function definition appears inline, in
the header file. Since the destructor for all stars is virtual, this is only a win when the
star is used as a base for derivation.

setup

This optional item defines the setup method, which is called every time the
simulation is started, before any compile-time scheduling is performed. The syntax is:

setup {body}

The optional keyword inline may appear before the setup keyword. It is common for
this method to set parameters of input and output portholes, and to initialize states.
For an explanation of the code syntax for doing this, refer to the section,“Reading
Inputs and Writing Outputs” on page 14-24. In some domains, with some targets, the
setup method may be called more than once during initiation. You must keep this in
mind if you use it to allocate or initialize memory.

begin

This optional item defines the begin method, which is called every time the
simulation is started, but after the scheduler setup method is called (that is, after any
compile-time scheduling is performed). The syntax is:

begin {body}
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This method can be used to allocate and initialize memory. It is especially useful
when data structures are shared across multiple instances of a star. It is always
called exactly once when a simulation is started.

go
This optional item defines the action taken by the star when it is fired. The syntax is:
go {body}

The optional keyword inline may appear before the go keyword. The go method will
typically read input particles and write outputs, and will be invoked many times
during the course of a simulation. For an explanation of the code syntax for the body,
refer to the section, “Reading Inputs and Writing Outputs” on page 14-24.

wrapup

This optional item defines the wrapup method, which is called at the completion of a
simulation. The syntax is:

wrapup {body}

The optional keyword inline may appear before the wrapup keyword. The wrapup
method might typically display or store final state values. For an explanation of the
code syntax for doing this, refer to the section, “Reading Inputs and Writing Outputs”
on page 14-24. Note that the wrapup method is not invoked if an error occurs during
execution. Thus, the wrapup method cannot be used reliably to free allocated
memory. Instead, you should free memory from the previous run in the setup or begin
method, prior to allocating new memory, and in the destructor.

public, protected, private

These optional items enable you to declare extra members for the class with the
desired protection. The syntax is:

protkey {body}
where protkey is public, protected, or private. Example, from the XMgraph star:

protected {
XGraph graph,;
double index;

}
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This defines an instance of the class XGraph, defined in the Agilent Ptolemy kernel,
and a double-precision number. If any of the added members require arguments for
their constructors, use the conscalls item to specify them.

ccinclude, hinclude

These optional items cause the .cc file, or the .4 file, to #include extra files. A certain
number of files are automatically included, when the preprocessor can determine
that they are needed, so they do not need to be explicitly specified. The syntax is:

ccinclude {inclist}
hinclude {inclist}

where inclist is a comma-separated list of include files. Each filename must be
surrounded either by quotation marks or by < and > (for system include files like
<math.h>).

code

This optional item enables the user to specify a section of arbitrary C++ code. This
code is inserted into the .cc file after the include files, but before everything else; it
can be used to define static non-class functions, declare external variables, or
anything else. The outermost pair of curly braces is stripped. The syntax is:

code {body}

header

This optional item enables the user to specify an arbitrary set of definitions that will
appear in the header file. Everything between the curly braces is inserted into the .2
file after the include files but before everything else. This can be used, for example, to
define classes used by your star. The outermost pair of curly braces is stripped.

method

This optional item provides a fully general way to specify an additional method for
the class of star that is being defined. Here is an example:

virtual method {
name {exec}
access {protected}
arglist {"(const char* extraOpts)"}
type {void}
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}

code {

// code for the exec method goes here

An optional function type specification may appear before the method keyword, which
must be one of the following:

virtual

inline

pure

pure virtual
inline virtual

The virtual keyword makes a virtual member function. If the pure virtual keyword is
given, a pure virtual member function is declared (there must be no code item in this
case). The function type pure is a synonym for pure virtual. The inline function type
declares the function to be inline.

The following are the method subitems:

name (Name of the method; required item).

access (Level of access for the method, one of public, protected, or private. If the
item is omitted, protected is assumed.

arglist (Argument list, including the outermost parentheses, for the method as
a quoted string. If this is omitted, the method has no arguments.)

type (Return type of the method. If the return type is not a single identifier, you
must put quotes around it. If this is omitted, the return type is void; no value is
returned).

code (C-code that implements the method. This is a required item, unless the

pure keyword appears, in which case this item cannot appear.

vendor

This optional item provides a way of specifying the source of a given star. For
example, {Agilent EEsof} declares that Agilent EEsof is the provider of the model.
This field is displayed in the Advanced Design System browser.
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This section assumes a knowledge of the C++ language. For those new to the
language, we recommend “The C++ Programming Language, Third Edition,” by
Bjarne Stroustrup (from Addison-Wesley).

C++ code segments are an important part of any star definition. They can appear in
the setup, begin, go, wrapup, constructor, destructor, exectime, header, code, and
method directives in the Agilent Ptolemy preprocessor. These directives all include a
body of arbitrary C++ code, enclosed by curly braces, “/“ and “/”. In all but the code
and header directives, the C++ code between braces defines the body of a method of
the star class. Methods can access any member of the class, including portholes (for
input and output), states, and members defined with the public, protected, and
private directives.

The Structure of an Agilent Ptolemy Star

In general, the task of an Agilent Ptolemy star is to receive input particles and
produce output particles. In addition, there may be side effects (reading or writing
files, displaying graphs, or even updating shared data structures). As for all C++
objects, the constructor is called when the star is created, and the destructor is called
when it is destroyed. In addition, the setup and begin methods, if any, are called every
time a new simulation run is started, the go method (which always exists, except for
stars like BlackHole and Null that do nothing) is called each time a star is executed,
and the wrapup method is called after the simulation run completes without errors.

Messaging Guidelines for Star .pl Files

This section provides guidelines for creating messages for display in the Advanced
Design System Status window (as is done for all Agilent EEsof stars). Messages are
needed to communicate status, warning, and error information. Examples of
messages used in star files can be seen in the pl files located at

SHPEESOF_DIR /doc/sp_files. All messages use methods from the Agilent Ptolemy
Error class and have the general form:

Error::<type>(<argument_list>);
where
<type> = message for communicating status information

<type> = warn for communicating warning information
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<type> = initialization for communicating error during simulation initialization
and setup

<type> = abortRun for communicating an error that will end the simulation
<argument_list> = argument list for the specific Error class method
An additional method for state range error reporting has the form:
<state_name>:rangeError(<argument_list>);
where
<state_name> = name of the state

<argument_list> = argument list for the specific Error class method

Status Messages

Status messages do not have any specific starting token in the argument list and
allow the simulation to conclude. Status messages are typically used in the setup()
and go() methods. Status messages can be created using the Error::message()
methods. These methods have the following prototypes:

Error::message(const char *, const char * = 0, const char * = 0);
Error::message(const NamedObj&, const char *, const char * = 0, const char * = 0);

Where possible, the second method should be used so that the name of the NamedObj
can be displayed along with the message. The named object can be *this to mean the
current star instance.

Warning Messages

Warnings have their messages automatically prefixed with the token Warning:, and
allow the simulation to conclude. Warning messages are typically used in the setup()
and go() methods. They can be created using the Error::warn() methods. These
methods have the following prototypes:

Error::warn(const char *, const char * = 0, const char * = 0);
Error::warn(const NamedObj&, const char *, const char * = 0, const char * = 0);

Where possible, the second method should be used so that the name of the NamedObj
can be displayed along with the message. The named object can be *this to mean the
current star instance.
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Errors have their messages automatically prefixed with the token ERROR:, and
result in stopping the simulation. Error messages used before the go() method are
called during a simulation and should not cause the simulation to stop until after the
completion of the simulation initialization and setup.

During the setup() method, state values should be checked for any value range error.
If an error exists in the state value, the State::rangeError() method should be used:

<state_name>.rangeError(const char *);
where the const char * is a string that defines the required state range.
Examples:

FCarrier.rangeError(">= 0.0");

Top.rangeError("> Bottom");

If an error other than this state range error occurs during the initialization process,
the Error:initialization() methods should be used. These methods have the following
prototypes:

Error::initialization(const char *, const char * = 0, const char * = 0);

Error::initialization(const NamedObj&, const char *, const char * = 0, const char *
=0);

Where possible, the second method should be used so that the name of the NamedObj
can be displayed along with the message. The named object can be *this to mean the
current star instance.

Error messages used in the go() method will not cause the simulation to stop until
after the current go() method is complete.

These error messages can be created using the Error::abortRun() methods. These
methods have the following prototypes:

Error::abortRun(const char *, const char * = 0, const char * = 0);
Error::abortRun(const NamedObj&, const char *, const char * = 0, const char * =
0);

Where possible, the second method should be used so that the name of the NamedObj

can be displayed along with the message. The named object can be *this to mean the
current star instance.
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Reading Inputs and Writing Outputs

The precise mechanism for references to input and output portholes depends
somewhat on the domain. This is because stars in the domain XXX use objects of
class InXXXPort and OutXXXPort (derived from PortHole) for input and output,
respectively. The examples used here are for the SDF (or TSDF) domain. See the
appropriate domain chapter for variations that apply to other domains.

PortHoles and Particles

In the SDF (T'SDF) domain, normal inputs and outputs become members of type
InSDFPort (InTSDFPort) and OutSDFPort (OutTSDFPort) after the preprocessor is
finished. These are derived from base class PortHole. For example, given the
following directive in the defstar of an SDF (TSDF) star,

input {
name {in}
type {float}
}

a member named in, of type InSDFPort (InTSDFPort), will become part of the star.

We are not usually interested in directly accessing these porthole classes, but rather
wish to read or write data through the portholes. All data passing through a porthole
is derived from base class Particle. Each particle contains data of the type specified in
the type subdirective of the input or output directive.

The operator % operating on a porthole returns a reference to a particle. Consider the
following example:

go {
Particle& currentSample = in%o0;
Particle& pastSample = in%1,

|

The right-hand argument to the % operator specifies the delay of the access. A zero
always means the most recent particle. A one means the particle arriving just before
the most recent particle. This also applies to outputs. Given an output named out, the
particles that are read from in can be written to out in the same order as follows:

go {

out%1 = pastSample;
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out%0 = currentSample;

}

This works because out%n returns a reference to a particle, and hence can accept an
assignment. The assignment operator for the class Particle is overloaded to make a
copy of the data field of the particle.

Operating directly on class Particle, as in the above examples, is useful for writing
stars that accept anytype of input. The operations don’t need to concern themselves
with the type of data contained by the particle. But it is far more common to operate
numerically on the data carried by a particle. This can be done using a cast to a
compatible type. For example, since in above is of type float, its data can be accessed
as follows:

go {
Particle& currentSample = in%0;
double value = double(currentSample);

|

or more concisely,

go {
double value = double(in%0);

The expression double(in%0) can be used anywhere that a double can be used. In
many contexts, where there is no ambiguity, the conversion operator can be omitted:

double value = in%0;

However, since conversion operators are defined to convert particles to several types,
it is often necessary to indicate precisely which type conversion is desired.

To write data to an output porthole, note that the right-hand side of the assignment
operator should be of type Particle, as shown in the above example. An operator << is
defined for particle classes to make this more convenient. Consider the following
example:

go {
float t;
t = some value to be sent to the output
out%0 << t;

}
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Note the distinction between the << operator and the assignment operator. The latter
operator copies Particles, the former operator loads data into particles. The type of
the right-side operand of << may be int, float, double, Fix, HPFix, Complex or
Envelope. Note that the Envelope data class includes the matrix data types. The
appropriate type conversion will be performed. For more information on the Envelope
and Message types, refer to Chapter 15, Data Types for Model Builders.

SDF (TSDF) PortHole Parameters

In the preceding example, where in%1 was referenced, some special action is required
to tell Agilent Ptolemy that past input particles are to be saved. Special action is also
required to tell the SDF (T'SDF) scheduler how many particles will be consumed at
each input and produced at each output when a star fires. This information can be
provided through a call to setSDFParams (setTSDFParams) in the method. This has
the syntax:

setup {
name.setSDFParams(multiplicity, past)
}

where name is the name of the input or output porthole, multiplicity is the number of
particles consumed or produced, and past is the maximum value that offset can take

in any expression of the form name%offset. For example, if the go method references
name%0 and name%1, then past would have to be at least one. It is zero by default.

Multiple PortHoles

Sometimes a star should be defined with n input portholes or n output portholes,
where n is variable. This is supported by the class MultiPortHole, and its derived
classes. An object of this class has a sequential list of PortHoles. For SDF (TSDF), we
have the specialized derived class MultiInSDFPort (MultiInTSDF Port), which
contains InSDFPorts (InTSDFPorts) and MultiOutSDFPort (MultiOutTSDFPort),
which contains OutSDFPorts (OutTSDFPorts).

Defining a multiple porthole is easy, as illustrated below:
defstar {
inmulti {
name {input_name}

type {input_type}
}
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outmulti {

name {output_name}
type {output_type}

1

|

To successively access individual portholes in a MultiPortHole, the MPHIter iterator
class should be used. Consider the following code segment from the definition of the
SDF Fork (TSDF Fork) star:

input {
namef{input}
type{ANYTYPE}
}
outmulti {
namefoutput}
type{= input}
}
go {
MPHIter nextp(output);
PortHole* p;
while ((p = nextp++) !=0)
(*p)%0 = input%0;
}

A single input porthole supplies a particle that gets copied to any number of output
portholes. The type of the output MultiPortHole is inherited from the type of the
input. The first line of the go method creates an MPHIter iterator called nextp,
initialized to point to portholes in output. The ++ operator on the iterator returns a
pointer to the next porthole in the list, until there are no more portholes, at which
time it returns NULL. So the while construct steps through all output portholes,
copying the input particle data to each one.

Consider another example, taken from the SDF Add star:

inmulti {
name {input}
type {float}

}

output {
name {output}
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type {float}

}

go {
MPHIter nexti(input);
PortHole *p;
double sum = 0.0;
while ((p = nexti++) !=0)

sum += double((*p)%0);

output?%0 << sum;

}
Again, an MPHIter iterator named nexti is created and used to access the inputs.

The numberPorts method of class MultiPortHole, which returns the number of ports,
is occasionally useful. This is called simply as portname.numberPorts(), and it returns
an int.

Type Conversion

The type conversion operators and << operators are defined as virtual methods in the
base class Particle. There are never really objects of class Particle in the system.
Instead, there are objects of class IntParticle, FloatParticle, ComplexParticle,
FixParticle, and HPFixParticle, which hold data of type int, double (not float),
Complex, Fix, and HPFix, respectively. (There are also MessageParticle and a variety
of matrix particles). The conversion and loading operators are designed to do the
right thing when an attempt is made to convert between mismatched types.

Clearly we can convert an int to a double or Complex, or a double to a Complex, with
no loss of information. Attempts to convert in the opposite direction work as follows:
conversion of a Complex to a double produces the magnitude of the complex number.
Conversion of a double to an int produces the greatest integer that is less than or
equal to the double value. There are also operators to convert to or from float, Fix,
and HPFix. Each particle also has a virtual print method, so a star that writes
particles to a file can accept anytype.

States

A state is defined by the state directive. The star can use a state to store data values,
remembering them from one invocation to another. States differ from ordinary
members of the star (defined by the public, protected, and private directives) in that
they have a name, and can be accessed from outside the star in systematic ways. For
instance, the Advanced Design System design environment enables you to set any
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state with the A_SETTABLE attribute to some value prior to a run; this is done via
the on schematic value entry or the Edit Component dialog. The state attributes are
set in the state directive.

A state may be modified by the star code during a run. To mark a state as one that
gets modified during a run, use the attribute A_NONCONSTANT. There is currently
no mechanism for checking the correctness of these attributes.

All states are derived from the base class State, defined in the Agilent Ptolemy
kernel. The derived state classes currently defined in the kernel are FloatState,
IntState, ComplexState, StringState, FileNameState, FloatArrayState, IntArrayState,
ComplexArrayState, StringArrayState, EnumerationState, and PrecisionState.

A state can be used in a star method in the same way as the corresponding predefined
data types. As an example, suppose the star definition contains the following
directive:

state {
name {myState}
type {float}
default {1.0}
descriptor {Gain parameter.}

}

This will define a member of class FloatState with default value 1.0. No attributes are
defined, so A_CONSTANT and A_SETTABLE, the default attributes, are assumed.
To use the value of a state, it should be cast to type double, either explicitly by the
programmer or implicitly by the context. For example, the value of this state can be
accessed in the go method as follows:

go {
output%0 << double(myState) * double(input%0);
}

The references to input and output are explained above. The reference to myState has
an explicit cast to double; this cast is defined in the FloatState class. Similarly, a cast
to int is available for IntState, to Complex for ComplexState, and to const char* for
Stringstate). In principle, it is possible to rely on the compiler to automatically invoke
this cast. However, note the following warning.

Explicit casting should be used whenever a state is used in an expression. For
example, from the setup method of the SDFChop star, in which use_past_inputs is an
integer state,
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if (int(use_past_inputs))
input.setSDFParams(int(nread),int(nread)+int(offset)-1);
else
input.setSDFParams(int(nread),int(nread)-1);

Note that the type Complex is not a fundamental part of C++. We have implemented
a subset of the Complex class as defined by several library vendors. We use our own
version for maximum portability. Using the ComplexState class automatically
ensures the inclusion of the appropriate header files. A member of the Complex class
can be initialized and operated upon any number of ways. For details, refer to the
section, “The Complex Data Type,” in Chapter 12, “Using Data Types in Model
Building.”

A state may be updated by ordinary assignment in C++, as in the following lines:

double t = expression;
myState = t;

This works because the FloatState class definition has overloaded the assignment
operator (=) to set its value from a double. Similarly, an IntState can be set from an
int, and a StringState can be set from a char* or const char*.

Array States

The ArrayState classes (FloatArrayState, IntArrayState and ComplexArrayState) are
used to store data arrays. For example,

state {

name {taps}

type {FloatArray}

default {"0.0 0.0 0.0 0.0"}

descriptor {An array of length four.}
}

defines an array of type double with dimension four, with each element initialized to
zero. Quotes must surround the initial values. Alternatively, you can specify a file
name with the prefix <. If you have a file named foo that contains the default values
for an array state, you can write:

default {"< foo"}

where the file foo must be located in the current project data subdirectory. If not in
the subdirectory, then the filename must include the full directory path as a prefix.
For instance:
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default {"< ~/user_name/directory/foo"}

The format of the file is also a sequence of data separated by spaces (or new lines,
tabs, or commas). File input can be combined with direct data input as in:

default {"< foo 2.0"}
default {"0.5 < foo < bar"}

A repeat notation is also supported for ArrayState objects: the two value strings

default {"1.0 [5]"}
default {"1.0 1.0 1.0 1.0 1.0"}

are equivalent. Any integer expression may appear inside the brackets //. The
number of elements in an ArrayState can be determined by calling its size method.
The size is not specified explicitly, but is calculated by scanning the default value.

As an example of how to access the elements of an ArrayState, suppose fState is a
FloatState and aState is a FloatArrayState. The access points, like those in the
following lines, are routine:

fState = aState[1] + 0.5;
aState[1] = (double)fState * 10.0;
aState[0] = (double)fState * aState[2];

For a more complete example of the use of FloatArrayState, consider the FIR star
defined below. Note that this is a simplified version of the SDF FIR star and does not
permit interpolation or decimation.

defstar {
name {FIR}
domain {SDF}
desc {

A Finite Impulse Response (FIR) filter.
}
input {
name {signalln}
type {float}
}
output {
name {signalOut}
type {float}
}

state {
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name {taps}
type {floatarray}
default { "-.04-.001.17 .37 .37 .17 -.0018 -.04" }
desc {Filter tap values.}
}
setup {
// tell the PortHole the maximum delay we will use
signalln.setSDFParams(1, taps.size() - 1);
}
go {
double out = 0.0;
for (int i = 0; i < taps.size(); i++)
out += taps[i] * double(signalln%i);
signalOut%0 << out;
}
}

Notice the setup method; this is necessary to allocate a buffer in the input PortHole
large enough to hold the particles that are accessed in the go method. Notice also the
use of the size method of the FloatArrayState.

Modifying PortHoles and States in Derived Classes

When one star is derived from another, it inherits all the states of the base class star.
Sometimes we want to modify some aspect of the behavior of a base class state in the
derived class. This is done by placing calls to member functions of the state in the
constructor of the derived star. Useful functions include setInitValue to change the
default value, and setAttibututes and clearAttributes to modify attributes.

When creating new stars derived from stars already in the system, you will often also
wish to customize them by adding new ports or states. In addition, you may wish to
remove ports or states. Although, strictly speaking, you cannot do this, you can
achieve the desired effect by simply hiding them from the user.

The following code will hide a particular state named statename from the user:

constructor {
statename.clearAttributes(A_SETTABLE);
}

Thus, when the user observes the available states for this star in the Advanced
Design System design environment, statename will not appear as one of the star
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parameters. Of course, the state can still be set and used within the code defining the
star.

The same effect can be achieved with outputs or inputs. For instance, given an output
named output, you can use the following code:

constructor {
output.setAttributes(P_HIDDEN);
}

This means that when you create an icon for this star, no terminal appears for this
port. This is most useful when output is a multiporthole, because there will then be
zero instances of the individual portholes.

This technique can also be used to hide individual portholes. However, it must be
used with caution because the porthole still remain. Most domains do not allow
disconnected portholes, and will flag an error. You can explicitly connect the port
within the body of the star.

Writing Timed Components

Writing Timed components using hpeesoflang is almost identical to writing any other
star. Following are the primary points of distinction:

¢ Receiving Timed data

To receive the data field of the Timed data via input TSDFPortHole, use the
following method:

Complex InTSDFPort::getIQData(int n)

where n is the current value of the input stream. For example, if the Timed
input port is named in, then

in.getIQData(0)

returns a complex number, which is the current I and Q members of the Timed
particle.

Similarly, the methods
int InNTSDFPort::getFlavor(int)
and

double TSDFPortHole::getCarrierFrequency(int)
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return the Flavor and Fc associated with incoming Timed particle.
* Sending data

As described in the preceding section “Reading Inputs and Writing Outputs” on
page 14-24, the operator << is used to load the output port with Timed data. For
example, given the Timed ports out1, out2, the following will output Baseband
and ComplexEnv flavor Timed data at outl and out2 ports. Note that the other
attributes of Timed particle are set by the engine.

gol

double x;
Complex z;
outl%0 << x;
out2%0 << z;

}
¢ Fc propagation

When a TSDF star is changing (or re-setting) the carrier frequency Fc, a
TSDFStar method should be used in the star setup as follows:

TSDFStar::propagateFc(double fc)

If this method is not explicitly used, the virtual method is used, which sets the
output carrier frequency equal to the maximum input carrier frequency.

Example of Writing Timed Components

method {

name {propagateFc}

access {protected}

arglist {"(double *fcin)"}

type {void}

code {
output.setCarrierFrequency(dummy);
}

}

¢ TStep propagation

When a TSDF star is changing or re-setting the T'Step (for example a source), a
TSDFStar method should be used in the star setup, as follows:

TSDFPortHole::setTimeStep(double tstep)
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¢ ComplexToTimed Converter example

defstar {
name {CxToTimed}
domain {TSDF}
desc {Converts a Complex signal to Timed. Given the
complex number (a+bj) at input, the output is a
ComplexEnv Timed signal
{T + jQ),fc} where I=a, Q=b and fc is a parameter.}
copyright {Copyright (c) Hewlett-Packard Company 1997}
attributes {S_HP}
location {Signal Converters}
input {
name {input}
type {Complex}}
output {
name {output}
type {timed}}
defstate {
name {TStep}
type {float}
default {0.0}
desc {Output time step}
units {TIME_UNIT}
attributes {A_SETTABLE | A_NONCONSTANT}}

defstate {

name {FCarrier}

type {float}

default {-1.0}

desc {Output Carrier frequency}

units {FREQUENCY_UNIT}

attributes {A_SETTABLE | A_NONCONSTANT}}
setup {

if (double(TStep) < 0.)

TStep.rangeError(">= 0");
output.setTimeStep((double)TStep);
output.setCarrierFrequency((double)FCarrier);
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// this method is for Fc propagation, overriding the virtual
TSDFStar::propagateFc()
method {
name {propagateFc}
access {protected}
arglist {"(double *fcin)"}
type {void}
code {
output.setCarrierFrequency(dummy);}
}
go {
output%0 << (Complex)(input%0);
H

Programming Examples

The following star has no inputs, just an output. The source star generates a linearly
increasing or decreasing sequence of float particles on its output. The state value is
initialized to define the value of the first output. Each time the star go method fires,
the value state is updated to store the next output value. Hence, the attributes of the
value state are set so that the state can be overwritten by the star’s methods. By
default, the star will generate the output sequence 0.0, 1.0, 2.0, etc.

defstar {
name {Ramp}
domain {SDF}
desc {
Generates a ramp signal, starting at "value" (default 0)
with step size "step" (default 1).
}
output {
name {output}
type {float}
}
state {
name {step}
type {float}
default {1.0}
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desc {Increment from one sample to the next.}

}

state {
name {value}
type {float}
default {0.0}
desc {Initial (or latest) value output by Ramp.}
attributes {A_SETTABLE | A_NONCONSTANT}
}
go {
double t = double(value);
output%0 << t;
t += step;
value = t;
}
}

The next example is the Gain star, which multiplies its input by a constant and
outputs the result:

defstar {
name { Gain}
domain {SDF}
desc {Amplifier: output is input times "gain" (default 1.0).}
input {
name {input}
type {float}
}
output {
name {output}
type {float}
}
state {
name {gain}
type {float}
default {"1.0"}
desc {Gain of the star.}
}
go |
output%0 << double(gain) * double(input%0);
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}
}

The following example of the Printer star illustrates multiple inputs, ANYTYPE
inputs, and the use of the print method of the Particle class.

defstar {
name {Printer}
domain {SDF}
inmulti {
name {input}
type {ANYTYPE}
}
state {
name {fileName}
type {string}
default {"<cout>"}
desc {Filename for output.}
}
hinclude {"pt_fstream.h"}
protected {
pt_ofstream *p_out;
}
constructor {p_out = 0;}
destructor {LOG_DEL; delete p_out;}
setup {
delete p_out;
p_out = new pt_ofstream(fileName);
}
go {
pt_ofstreamé& output = *p_out;
MPHIter nexti(input);
PortHole* p;
while ((p = nexti++) !=0)
output << ((*p)%0).print() << "\t";
output << "\n";
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This star is polymorphic since it can operate on any type of input. Note that the
default value of the output filename is <cout>, which causes the output to go to the
standard output.

Preventing Memory Leaks in C++ Code

Memory leaks occur when new memory is allocated dynamically and never
deallocated. In C programs, new memory is allocated by the malloc or calloc
functions, and deallocated by the free function. In C++, new memory is usually
allocated by the new operator and deallocated by the delete or the delete [] operator.
The problem with memory leaks is that they accumulate over time and, if left
unchecked, may cripple or even crash a program. Agilent EEsof has taken extensive
steps to eliminate memory leaks in the Agilent Ptolemy software environment by
implementing the following guidelines and by tracking memory leaks with Purify (a
commercial tool from Pure Software, Inc.).

* One of the most common mistakes leading to memory leaks is applying the
wrong delete operator. The delete operator should be used to free a single
allocated class or data value, whereas the delete [] operator should be used to
free an array of data values. In C programming, the free function does not make
this distinction.

¢ Another common mistake is overwriting a variable containing dynamic memory
without freeing any existing memory first. For example, assume that thestring
is a data member of a class, and in one of the methods (other than the
constructor), there is the following statement:

thestring = new char[buflen];
This code should be

delete [] thestring;
thestring = new char[buflen];

Using delete is not necessary in a class’ constructor because the data member
would not have been previously allocated.

¢ In writing Agilent Ptolemy stars, the delete operator should be applied to
variables containing dynamic memory in both the star’s setup and destructor
methods. In the star’s constructor method, the variables containing dynamic
memory should be initialized to zero. By freeing memory in both the setup and
destructor methods, one covers all possible cases of memory leaks during
simulation. Deallocating memory in the setup method handles the case in
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which the user restarts a simulation, whereas deallocating memory in the
destructor covers the case in which the user exits a simulation. This includes
the cases that arise when error messages are generated.

¢ Another common mistake is not paying attention to the kinds of strings
returned by functions. The function savestring returns a new string
dynamically allocated and should be deleted when no longer used. The
expandPathName, tempFileName, and makeLower functions return new
strings, as does the Target::writeFileName method. Therefore, the strings
returned by these routines should be deleted when they are no longer needed,
and code such as

savestring(expandPathName(s))
is redundant and should be simplified to
expandPathName(s)

to avoid a memory leak due to not keeping track of the dynamic memory
returned by the function savestring.

¢ Occasionally, dynamic memory is used when local memory could have been used
instead. For example, if a variable is only used as a local variable inside a
method or function, and the value of the local variable is not returned or passed
to outside the method or function, then it is better to simply use local memory.
For example, the sequence

char* localstring = new char[len + 1];
if (person == absent) return;
strepy(localstring, otherstring);
delete [] localstring;

return;

could easily return without deallocating localstring. The code should be
rewritten to implement either the StringList or InfString class; for example:

InfString localstring;

if (person == absent) return;
localstring = otherstring;
return;

Both StringList and InfString can manage the construction of strings of
arbitrary size. When a function or method exits, the destructors of the
StringList and InfString variables are automatically called, which deallocates
their memory. Casts that convert StringList to a const char* string and
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InfString to a const char* or a char* string are defined, so that instances of the
StringList and InfString classes can be passed as is into routines that take
character array (string) arguments. The following is a simple example of the
function that builds an error message into a single string:

StringList sl = msg;

n,on

sl << file << ": " << sys_errlist[errno];
ErrAdd(sl);

The errAdd function takes a const char* argument, so sl is automatically
converted to a const char* string by the C++ compiler.

Instead of using the new and delete operators, it is tempting to use constructs
like:

char localstring[buflen + 1];

in which buflen is a variable. This is because the compiler will then
automatically handle memory deallocation. Unfortunately, this syntax is a Gnu
extension and is not portable to other C++ compilers. Instead, the StringList
and InfString classes should be used, as in the previous example involving
localstring.

Sometimes the return value from a routine that returns dynamic memory is not
stored and, therefore, the pointer to the dynamic memory gets lost. This occurs,
for example, in nested function calls. Code such as

puts(savestring(s));
should instead be written as

const char* newstring = savestring(s);
puts(newstring);
delete [] newstring;

Several features in Agilent Ptolemy, especially in the schedulers and targets,
rely on the hashstring function, which returns dynamic memory. This dynamic
memory, however, should not be deallocated because it may be reused by other
calls to hashstring. It is the responsibility of the hashstring function to
deallocate any memory it has allocated.

Agilent Ptolemy pl File Template
The following is a pl file template:
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HPtolemy Star coding template

defstar {

name {my_model}  // Limitlength to one line 30 characters maximum

/I No spaces. Only alpha-numeric characters and underbar.

/I Name should be constructed as one or more concatenated

/I word segments with each word segment beginning with a capital letter.
domain {SDF} // or TSDF

desc {my_model_name} // Limitlength to one line of 50 characters maximum
/I This description should be a short phrase defining the star

/I Do not use a period followed by a space; ". "

/I The period followed by a space is recognized by HPtolemy

/I as the end of the descriptions to be displayed in AEL

/I A detailed model explanation should be placed in the

/I explanation {} field

version {@(#) $Source: /wiv/src/sp100/source/ptolemy/src/domains/sdf/istars/SDFmy_model.pl $
$Revision: 1.0 $ $Date: 1997/10/28 16:26:58 $}

/I This version field to be changed as needed for HMS source code control by the user
author {Author's name}

acknowledge {arbitrary single line of text to acknowledge others}

location {my_model_library_location} // Name of Library used in the Schematic
attributes {S_USER} // or S_HIDDEN

derivedfrom {base_star_name} /I Optional: delete if not used
copyright {

Copyright (c) Hewlett-Packard Company 1997

All rights reserved.

explanation {my_model_explanation}
/I Use as many lines as needed to describe the star, it's purpose,
/I algorithm, application, references, or other information to
/I document this component
/I Define a defstate for each parameter
defstate {
name {my_state_name} // Limit length to one line 30 characters maximum
/I No spaces. Only alpha-numeric characters and underbar.
/I Name should be constructed as one or more word segments
/I with each word segment beginning with a capital letter.
type {my_state_type} // Options: int, fix, float, complex, string, precision,
/I intarray, fixarray, floatarray, complexarray, stringarray
/I For the enum state, see the next defstate{} example
/I For the filename state, see the following defstate{} example
default {my_state_default_value}

/I Example int: 1

/I Example float: 1.25

/I Example fix: 1.25

/I Example complex: "(1.25, 2.5)"
/I Example string: "my string"
/I Example precision: 2.14

/I Example intarray: 1,2,3,6,9

/I Example float array: ~ 1.25, 3.50, 6.75
/I Example complexarray: "“(1.25, 2.5) (2.4, -2.3) (-1.2, -2.2)"
/I Example stringarray: ~ "Button 1" "Button 2"
units {UNITLESS_UNIT}
/I Options: STRING_UNIT, UNITLESS_UNIT,
/I FREQUENCY_UNIT, TIME_UNIT, ANGLE_UNIT
/I Note: ANGLE_UNIT for phase in degrees
/I Other units are available for resistance, length, etc., but might
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/I not be relevant to numeric stars
desc {my_state_description}
/I Begin with a short phrase defining this state and ending with
/I a period and a space. This initial sentence will be used in the
/I AEL for this star. This initial sentence may be followed
/I with additional content to describe this state and its use
attributes {A_SETTABLE | A_NONCONSTANT}
/I These attributes are for states the for use at the schematic
/I level. If a state is to be hidden from the schematic, it can be
/I listed as A_ NONSETTABLE | A_NONCONSTANT

/I Define a defstate for each parameter; example for enumerated state
defstate {
name {my_state_name} // Limitlength to one line 30 characters maximum
/I No spaces. Only alpha-numeric characters and underbar.
/I Name should be constructed as one or more word segments
/I with each word segment beginning with a capital letter.
type {enum} /I enumerated state
default {"option1"}  // default in quotes
desc {my_state_description}
/I Same notes as for the state description apply
enumlist { option 1, option 2}
/I enumerated list separate with commas
/I each enumeration may contain spaces, underbar or other
/I alpha-numeric characters, but none other
/I Code may be reference the enumeration by use of the option
/I with spaces replaced by underbars.
/I Example: if (my_enum_name == option_1) {
1 ... code here ...
I/
enumlabels { opt 1, opt 2}
/I an abbreviation of the enumlist options, used during AEL
/I generation
attributes {A_SETTABLE|JA_NONCONSTANT}
/I These attributes are for states the for use at the schematic
/I level. If a state is to be hidden from the schematic, it can be
Il listed as A_NONSETTABLE | A_NONCONSTANT

/I Define a defstate for each parameter; example for file name state
defstate {
name {my_state_name} // Limitlength to one line 30 characters maximum
/I No spaces. Only alpha-numeric characters and underbar.
/I Name should be constructed as one or more word segments
/I with each word segment beginning with a capital letter.
type {filename} /I file name state
default {"xyz.ext1"}  // default in quotes
desc {my_state_description}
/I Same notes as for the state description apply
extensions { extl1, ext2, ext3 }
Il extension list separate with commas
/I each extension may contain underbar or other
/I alpha-numeric characters, but none other
attributes {A_SETTABLE|A_NONCONSTANT}
/I These attributes are for states the for use at the schematic
Il level. If a state is to be hidden from the schematic, it can be
I listed as A_ NONSETTABLE | A_NONCONSTANT
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}
port_type { // Options: input, output, inmulti, outmulti
/I See programmers manual for the use of each port_type
name {port_name}
type {port_type}
/I When Domain == SDF:
/[Options: int, float, fix, complex, message, int_matrix_env,
/I float_matrix_env, complex_matrix_env, fix_matrix_env,
/I anytype
/ When Domain == TSDF:
/I Options: timed
desc {port_desc}
}
hinclude {
/I Optional: delete if not used
/I User specifies other files to include in the .h file

}

header {

/I Optional: delete if not used

/I User places C/C++ code to include in the .h file, before the class definition

ccinclude {

/I Optional: delete if not used

/I User inserts .cc include files here in quotes with comma separators. Example:
/1 "filel.cc","file2.cc","file3.cc”

}

private {

/I Optional: delete if not used

/I Define private data members of the star class

}

protected {

/I Optional: delete if not used

/I Define protected data members of the star class

constructor {

/I Optional: delete if not used

/I Called when instance created.

/I Allows user to specify extra C/C++ code to be executed in the constructor

/I for the class.

/I This field can initialize the public data member that indicates delays associated
/I with input pins

conscalls {

/I Optional: delete if not used

/I Used when data members have constructors and require arguments.
/I These members would be added by using the public, private, or

/I protected keywords. If such members exist, conscalls provides

/I the user with a mechanism for passing arguments to the

/I constructors of those members. Example:

/I memberl(arglist), member2(arglist)

setup {

/I Optional: delete if not used

/I CIC++ code to execute at start time, before the scheduler setup.
/I Check each state value for validity

/I Example: if (double(state_name) < 0.5) {
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I state_name.rangeError(">= 0.5");

I }

/I See also messaging guidelines for status messages, warning messages,
/I error messages

}

begin {

/I Optional: delete if not used

/I CIC++ code to execute at start time, after the scheduler setup.
}

go {

/I User supplied C/C++ code here

I

}

wrapup {

/I Optional: delete if not used

/I CIC++ code to invoke at the end of a run (if no error occurred)

destructor {
/I Optional: delete if not used
/I User C/C++ code to include in the destructor for the star

}

method {

/I Optional: delete if not used

/I Define a member function for the star class
/I Can also substitute for method:

/I virtual method, inline method, pure method, pure virtual method,
/l'inline virtual method

/I name {user defined name}

/I access {either private, protected, or public}
/I arglist {"(arguments in quotes)"}

/I type {the return type of the method}

/I code {C/C++ code defining the method}

code {
/I Optional: delete if not used
/I CIC++ code to include in the .cc file outside the class definition

}
}

Writing Sink Models

Sinks are models with inputs but no outputs. The main use of sinks is to write data to
files (ASCII, dataset, etc.). The data written to the file could be the raw data collected
from the sink’s inputs, or the sink’s collected data can be processed and then written
to the file. The processing of the data can be done during the simulation (in the go
method of the sink) or after the simulation has finished (in the wrapup method of the
sink).
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In order to write a sink model, you first need to understand the concept of a task. In
addition, you need to learn how to use tasks and how to write data to a dataset. The
following sections describe these concepts and give simple examples showing how
they are used.

Understanding Tasks

A task is something that needs to be completed before the simulation can finish. In
other words, you can think of a task as something that controls the simulation by
keeping it running or by causing it to terminate. The simulator keeps a list of all the
tasks that have not completed, called the TaskList, and as long as there are tasks in
this list it will continue to run the simulation. The simulation terminates as soon as
the TaskList becomes empty.

Any model can add/remove tasks to/from the TaskList at any time during the
simulation. However, tasks are particularly useful when used in source or sink
models. All Agilent Ptolemy sinks and a few sources (the ones that generate a finite
amount of data, such as the file-based ones) use tasks to control how long the
simulation will run. Some of the Interactive Control and Displays components also
use tasks.

For example, a file-based source adds a task to the TaskList at the beginning of the
simulation and removes it when it has reached the end of the file it reads. This way
(and if no other component has added a task to the TaskList) you can guarantee that
the simulation will run as long as there is data in the file being read.

On the other hand, sinks typically add a task to the TaskList at the beginning of the
simulation and remove it when they have collected all the data they need. The time a
sink removes its task from the TaskList is usually known before the simulation starts
(almost all sinks have a Stop parameter). However, there are sinks that decide when
to remove their tasks while the simulation is running. Examples of such sinks are the
BER sinks (berIS, berMC, berMC4), which keep track of the relative variance of their
BER estimate and remove their tasks when the variance falls below a user-specified
value. The SimpleBERSink shown in the section “SDFSimpleBERSink” on

page 14-52 is another example of such a sink.

Sink Coding Methodology

Every sink needs to define an object of the class SinkContirol in the private, protected,
or public section of its .pl file. This will require that the TargetTask.h header file is
listed in the hinclude section of the .pl file and that the variable KERNEL (or another
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variable that automatically sets KERNEL to 1, such as SDFKERNEL,
TSDFKERNEL) is set to 1 in the corresponding make-defs file. The SinkControl
object should call its initialize function in the begin section. The go section should
look like:

go {

if (sinkControl.collectData()) {

// all the sink go code should be entered her.

}

}

where sinkControl is an object of type SinkControl.

Let’s look into what all the above means in more detail. A SinkControl object is an
object that can add/remove a single task to/from the TaskList. In addition, it has an
internal timer/counter to keep track of some notion of the simulation time. A
SinkControl object needs to be initialized before it can be used. This is done by calling
its initialize function. There are two overloaded versions of this function:

1) initialize( Block& master, double start_value, double stop_value, double step_value )
ii) initialize( Block& master, double start_value, double step_value )

The first argument in both cases must always be *this, where this is the pointer to the
sink object itself. The choice of which initialize function is called will determine the
way the sink behaves:

1. When the first initialize function is called, the SinkControl object will add a
task to the TaskList and reset its internal timer/counter to 0. Then every time
the collectData function is called, it increments the timer/counter by step_value
and returns 1 (TRUE) if the timer/counter (before being incremented) was
between start_value and stop_value. It returns 0 (FALSE) otherwise. When the
timer/counter reaches stop_value the task is automatically removed from the
TaskList. If you want to remove the task from the TaskList before stop_value is
reached, you can do so by calling the stopControl function. This is used in the
BER sinks (see example SimpleBERSink at the end of this section) where
stopControl is called when some condition is satisfied. Although in this case you
might want to ignore stop_value completely, it still makes sense to define it as
an upper limit of how long the simulation will run just in case the condition
that needs to be satisfied before stopControl is called is never satisfied. If you
are absolutely certain that the condition you are using will be satisfied, and do
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not know what value to use for stop_value, use a very large value, e.g., 1.0e20.
When calling this initialize function, start_value must be greater than or equal
to 0, stop_value must be greater than or equal to start_value, and step_value
must be greater than 0. If these conditions are not satisfied the simulation will
abort.

2. When the second initialize function is called, the SinkControl object will not
add a task to the TaskList. Therefore, the sink will not control how long the
simulation will run. The timer/counter is still reset to 0. When collectData is
called, it increments the timer/counter by step_value and returns 1 (TRUE) if
the timer/counter (before being incremented) was greater than or equal to
start_value. In this mode of operation, the sink can be used to collect all the
data from a simulation controlled by some other sink or source. This may be
useful for large, multirate designs, where you do not know the rates at the
points where you want to collect the data. If the sink’s SinkControl object is
initialized using the first initialize function and start_value, stop_value are not
selected appropriately, the design might end up simulating a lot more than it
should. By setting only one sink to control the simulation and letting the others
collect data as long as the simulation runs, you can guarantee that the data
collected in all sinks will correspond time-wise to the data collected in the sink
that controlled the simulation. Another case where this mode of operation is
useful is when the input signal for a simulation is read from a file and the
amount of data in the file is not known. By setting only the source to control the
simulation, you can “force” the sinks to collect the right amount of data no
matter how much data there is in the file. When calling this initialize function,
start_value must be greater than or equal to 0 and step_value must be greater
than 0. If these conditions are not satisfied, the simulation will abort.

Useful Notes/Hints

¢ A sink model need not operate in only one of the two ways described above.
Parameters can be used to decide how the sink’s SinkControl object is
initialized. For example, this is the purpose of the ControlSimulation parameter
of the NumericSink and TimedSink models. Also see the examples in the
section “Examples of Sink Models” on page 14-51.

* When a sink is to be used with numeric data, it is recommended to use 1 as the
step_value when calling the initialize function. When a sink is to be used with
timed data, it is recommended to use the simulation time step (obtained by
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calling input.getTimeStep(), where input is the name of the input port) as the
step_value when calling the initialize function.

¢ It is recommended that you only write uni-rate sink models, that is, sinks that
only read one sample from their inputs every time they are fired.

¢ A sink that needs to post-process the data it collects, that is, it just stores the
data in some array during go and processes it in wrapup, must always be
initialized using the first initialize function. Otherwise, you will not know how
much memory needs to be allocated for the array that will store the collected
data during go. Examples of sinks like that are the SpectrumAnalyzer, EVM,
and refer to “SDFMedianSink” on page 14-52. A sink that can process the
collected data in go can be initialized in either of the two ways described above.

* Two other useful functions of the SinkControl class are the time and index
functions, which return the current value of the SinkControl object’s internal
timer/counter. The time function returns a double and it should be used with
timed data, whereas the index function returns an int and it should be used
with numeric data. These functions are typically used as the value of the
independent variable for data written to a dataset.

* The “Data collection is XX.X% complete” messages displayed in the
Status/Summary window are automatic (there is nothing extra you need to do
in order to get these messages printed out). However, if you want to print more
status information you can use the Error::warn() or Error::message() methods.
The Error::warn() method sends messages to the Simulation/Synthesis
messages window, whereas the Error::message() method sends messages to the
Status/Summary window.

For more details on these methods, refer to “Messaging Guidelines for Star .pl
Files” on page 14-21 in this chapter. Refer to “SDFSimpleBERSink” on
page 14-52 for an example of how the Erorr::message() method can be used.

Writing Data to a Dataset

If the sink model needs to write data to a dataset, it needs to make use of the
SimData class. Not all sinks write data to a dataset. For example, the Printer sink
writes data to an ASCII file. To use the SimData class you need to define a pointer to
an object of this class in the private, protected, or public section of the sink’s .pl file.
This will require that the SimData.h header file is listed in the ccinclude section of
the .pl file and that the variable KERNEL (or another variable that automatically
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sets KERNEL to 1, such as SDFKERNEL, TSDFKERNEL) is set to 1 in the
corresponding make-defs file.

The SimData class is an abstract class so only pointers to it can be defined. If you
define an object of this class in your sink model, your model will not even compile.
The compiler will error out with an error message similar to the ones below:

¢ SimData : cannot instantiate abstract class (Windows)
¢ Cannot declare a member of the abstract type SimData (Sun)
¢ A class member may not be declared with an abstract class type (HP-UX)

¢ Cannot use the abstract class SimData as the type of an object, parameter type
or return type (AIX)

What foll